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ON THE CONDITIONAL VARIANCE - COVARIANCE FOR SCALE 

MIXTURES OF NORMAL DISTRIBUTIONS 

AND ITS APPLICATIONS

Abstract
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Chair: Stergios B. Fotopolous

Let X = /112G be a scale mixture o f  multivariate normal distribution with X, G e R " ,  

where G is a multivariate normal vector, and A is a positive random variable independent o f 

the multivariate random vector G. This model is capable o f  capturing the frequently reported 

leptohurtosis in economic data. This thesis focused on the investigation o f the conditional 

variance-covariance o f  the scale mixtures model under some regularity conditions. We found 

that the conditional variance-covariance, C o v (x ,|X ,), X, e R * 1, is always finite a.s. for m 

greater or equal to 2, where X, is /w-dimensional vector and m<n. It remains finite a.s. for 

m - \ ,  if  and only if  £[/ l i : ] < ® . It was shown that the conditional variance is not degenerate

as in the Gaussian case, instead, it is a function o f  expectation o f  mixing variable A condi­

tioning on X,. This function, denoted, by SAjn(.), depends upon x,, the mixing variable A, and 

the dimensionality m as well. In this study, integral representation forms o f  SAjn(.) were pre-
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sented, and various properties were derived based on the integral representations. Applica­

tions to uniform mixture, a /2  -stable mixture and generalized gamma mixture o f  normal dis­

tributions were also given. Some asymptotic expansions with error bounds for SAja(.) were 

obtained using Laguerre and Hermite pplynomials. All these asymptotic expansions were 

presented in manageable and computable forms. The results provided in this research will 

help us to better understand the behaviors o f the heteroskedasticity in regression when the 

errors assume the structure o f normal scale mixture.

In this thesis, we also developed the asymptotic theory o f  sample moments and some unit 

root statistics, such as, the Lagrange multiplier statistics, the Durbin-W atson statistics, and 

the ranked Dickey-Fuller statistics, for the first-order autoregressive process with the innova­

tions belonging to the domain o f attraction o f  symmetric stable law. We established the lim­

iting theories in terms o f  standard SaS Levy motions. Spurious regression phenomenon was 

also investigated in the context o f infinite variance. These asymptotic results can be viewed 

as parallel extensions o f the Gaussian case, and may be applied in the investigation o f  inte­

gration or cointegration for the heavy-tailed time series.
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CHAPTER 1

INTRODUCTION

l . i  Motivations of the Study

Mixture distributions have been proved to be of considerable interest in recent years in terms of both 

methodological development and applications. Researchers have found far-reaching applications 

ranging from finance to economics, from physics to biology, and from decision theory to reliability 

theory. Mixture model is attractive when a distribution under investigation is too complicated to 

work with, but can be decomposed as mixture of simple (known) distributions. Among a large vari­

ety of mixture distributions, the family of scale (variance) mixtures of normal distributions is of par­

ticular interest because it is closely related to normal theory. A wide class of continuous, symmetric, 

unimodal distributions on the real line can be expressed as a scale mixture of normal distributions. 

Examples include the Student’s t family, Laplace’s double exponential, logistic, the exponential 

power family, the a  -stable family, and the contaminated normal family, etc.. All these important 

distributions share one common feature: they have heavier tails relative to normal distribution, and 

are often viewed as good candidates in modeling economic data which exhibits leptokurtosis. A 

better understanding of this model will be helpful in modeling heavier tailed data. In the linear re­

gression model, if the errors are not normal, then constant variance assumption is often violated even 

though the linear regression property may still holds. In this case, we encounter the heteroscedastic- 

ity. As shown in Chapter 1, the scale mixture o f normal distributions provides a good example for 

heteroscedastictiy in regression. A thorough study of this mixture model will help us understand the

1
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heteroscedasticity phenomenon in a regression model when the errors are assumed to have the scale 

mixture of normal distributions.

Another motivation for this study arises from financial modeling. There are numerous empirical 

evidence against the normality assumption for the marginal distribution of stock returns and price 

changes in common stocks and foreign exchanges. However, the stationarity of stock returns re­

mains a crucial assumption in estimating expected returns under the Capital Asset Pricing Models 

(CAPM) as well as in option pricing models. Accordingly, the uncorrected heteroscedasticity will 

result in biased estimators of variance, and such biased estimators are likely to lead to inferences 

which are misleading at best. Thus, the detection of the sources of heteroscedaticity in common 

stock returns and price changes will be helpful in explaining variance of the stock returns. Since the 

seminal work of Mandelbrot (1963a, 1963b), how to model the observed leptokurtosis and hetero- 

schedasticity has been a popular topic in empirical financial studies. To explain the observed lep­

tokurtosis and heteroscedasticity, many mixture models have been proposed and tested. For exam­

ple, Mandelbrot (1963a, 1963b, 1967) and Fama ( 1965) suggested the use o f a-stable distributions; 

Blattberg and Gonedes (1974) claimed Student t distribution has a better fit than normal and stable 

distributions; Clark (1974) used the subordinated stochastic process to model the stock return gener­

ating process; Ball and Torous (1985), Akriray and Booth (1986, 1987) advocated a Poisson jump- 

diffusion process; Kon (1984) proposed a finite (discrete) mixture of normal distribution for stock 

returns; Gray and French(l990) used the exponential power family to model stock returns; Smith 

(1981) tested the hypothesis o f logistic distribution for stock returns, etc.. All these distributions are 

successful in capturing the observed leptokurtosis more or less. One remaining question is that these 

distributions proposed and tested by the above authors are ad hoc distributions. There is no theoreti­

cal justifications for the use of the above mentioned distributions. Therefore an intuitive model, 

which is able to explain the empirical features and can provide some natural explanation for the pos-

2
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sible generating process of leptokutosis and heteroscedasticity, is in need. Phillips (1995) argued 

that leptokurtosis may come either from random summation of iid normal variables or from ran­

domization of scale parameter in normal distribution. These two schemes result in the normal scale

mixtures. If  the underlying data generating process is Gaussian, but “contaminated” (or, mixed) by

some other unknown process, the resulting process will exhibit non-homogeneity, and the marginal 

distribution will be leptokurtotic. Scale mixture of normal hypothesis provides a natural way to ex­

plain how the data generating process is contaminated. The mixture o f normal distributions hypothe­

sis is thus both theoretically and empirically appealing to financial research community.

Epps and Epps (1976) and Akgiray (1989) argued that the heteroscedasticity in common stock 

returns is a function of the information arrival to the market. Since 1980’s, scale mixture of normal 

distributions has received an increasing amount of attention in modeling volatility of stock returns 

and price changes. For example, the ARCH-GARCH family:

r, =/•„+£•,, (1.1.1)

e, =<7,2,, (1.1.2)

= a o + ' L l ia '£>-l + ( 1 1 3 )

uses normal scale mixture to capture the conditional heteroscedasticity (equation 1.1.2), and uses the 

autoregressive process to model volatility persistence and clustering (equation 1.1.3). Several recent 

studies (Tauchen and Pitts 1983, Harris 1982, 1986, and 1987, Foster and Viswanathan 1990, 1993, 

Richardson and Smith 1994 ) focused on the empirical tests of the mixture of distributions hypothe­

sis in which the stochastic mixing variable has certain known distributions such as inverted gamma, 

log-normal, and symmetric a  -stable. Strong empirical evidence in favor o f mixture of distributions 

hypothesis for daily stock price changes was found in those studies. Another popular topic in em-

3
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pirical finance is the investigation of the relationship between prices variability ( measured as 

squared price changes) and trading volume under the following bivariate mixture model:

=yfT<r\Z„
V o l ^ c I . + J T ^ Z , ,  (1.1.4)

Cov(AP,, F o /,|/,)= 0 ,

where I, is a positive random variable denoting the relevant information flow arriving at stock mar­

ket, Z, is a Gaussian process independent of information flow. In the study of the relationship be­

tween AP2 and Vol, , one needs to evaluate the conditional variance E^AP2\Vol, j, which, in turn, 

depends on the functional form of £j/,jFio/,j. Note that the marginal distribution of information 

flow is in general unknown, it is impossible to evaluate £[/,jKo/, j explicitly without assuming a

prior distributional form for the information flow / , .  Harris (1987) used the number of transactions 

as the proxy for the information flow. Such proxy was found imperfect in Richardson and Smith 

(1994). How to evaluate |^o/, ], even approximately, remains challenge to financial economet­

ric researchers, and motivates us to investigate the behavior of conditional variance for the scale 

mixture of normal distributions.

1.2 Purposes o f the Study

There is a large body of literature on the scale mixture o f normal distributions, but most o f them are 

confined to the discrete mixture or the univariate case. In this study, we want to investigate the 

properties of normal mixture model in a multivariate setup. In a multivariate linear regression

4
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model, as shown in Chapter 1, if the errors have scale mixture of multivariate normal distribution, 

the regression property holds, that is, the conditional expectation remains linear. But the conditional 

variance of Y given X is no longer degenerate, and the non-degenerate conditional variance accounts 

for the heteroscedasticity in the regression model. One of major interests in this study is thus placed 

on the investigation of the behaviors of conditional variance under the structure of normal scale 

mixture based on the integral representations o f the conditional variance.

The second purpose of this study is to find the asymptotic forms of conditional variance for some 

important mixing schemes, such as a  -stable mixture, uniform mixture, and Gamma mixture, around 

both small argument and large argument.

Since the distribution of mixing variable is unknown in general, it is impossible to evaluate the 

conditional variance exactly. However, without assuming distributional from of mixing variable, we 

may still be able to evaluate the conditional variance approximately based on the integral representa­

tions. Our third purpose in this study is to evaluate the conditional variance under the structure of 

multivariate normal mixtures approximately using some special functions.

The fourth purpose of this study is to investigate the asymptotic behaviors of sample moments 

and unit root test statistics for testing H0. p  = 1 in the following first-order autoregressive model 

with heavy tails:

Y ,= p Y , .^ e „  (1.2.1)

where e, is a sequence of iid random variables from the domain of attraction of a symmetric stable 

law. Many time series data in finance and economics exhibits non-stationarity due to a unit root. 

How to detect the presence of unit roots has been a hot topic in econometric literature. For the scale

mixture of normal innovations, i.e., {£■,,/>0} =t/ > o j ,  we find that if they have finite

variance, then the asymptotic results would be the same as they are for the Gaussian case. If e, ’s

5
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have infinite variance, that is, e, ’s are sub-Gaussian, the asymptotic distributions of scale invariant 

statistics such as / or F, and most of unit root test statistics as well will be the same as they are for the 

Gaussian case, since they are radically decomposable (Ng and Fraser 1994). Thus there is no need to 

further study the asymptotic theory of unit root test statistics for the scale mixture o f normal errors. 

Our study hence is confined to the case that the innovations are independent and identically distrib­

uted random variables belonging to the domain of attraction of a SaS  law, so they have infinite vari­

ance but can not be sub-Gaussian.

1.3 Outline of the Thesis

This thesis is a collection of several papers and can be divided into two parts. The first part (Chapter 

2 - 5) consider the properties of the scale mixture of normal distributions, and the behaviors of con­

dition variance under the multivariate normal scale mixture structure. The second part (Chapter 6) 

deals with the asymptotic theory of unit root test for the autoregressive model with infinite variance.

We start with reviewing the relevant literature. Model definitions and assumptions are given in 

Chapter 2. Some properties are also collected there. In the third chapter, we study the behaviors of 

conditional variance under the normal scale mixture model. Integral representations are obtained in 

this chapter.

The asymptotic behaviors of stable mixture, uniform mixture, and Gamma mixture of normal 

distributions are studied in Chapter 4. In Chapter 5, expansions and error bounds for the conditional 

variance are established using Laguerre and Hermite polynomials.

In Chapter 6, we investigate the limiting theory of sample moments for a first-order autoregres­

sive process with the innovations belonging to the domain of attraction of a symmetric a  -stable law.

6
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Asymptotic distributions for some unit root test statistics such as the Lagrange multiplier statistics, 

Durbin-Watson statistics, Ranked Dickey-Fuller statistics are provided in this chapter, and the spuri­

ous regression in the context of infinite variance is also analyzed in this chapter.

7
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CHAPTER 2

REVIEW OF THE SCALE MIXTURE OF 
NORMAL DISTRIBUTIONS

A large body of literature exists on scale mixture of normal distributions. Kelker (1971) and An­

drews and Mallows (1974) gave necessary and sufficient conditions for a distribution to be a normal 

scale mixture. This family can be characterized by the property o f complete monitonicity. Teicher 

(1963) addressed the general question of identifiability. Keilson and Steutel (1974) gave the meas­

ure of departure from normality in terms o f Z,-r.orm. Basu (1996) showed the class ?(p,Q;cr2J=

{Z7is a normal scale mixture and F(Q) = p, VarF(X ) = <r2 j is non-empty if and only if p  is

greater than or equal to some fixed constant. Review of literature on the scale mixture of univariate 

distributions can be found in Gupta and Huang (1981), Everitt and Hand (1981), and Titterington 

(1990). For the scale mixture of multivariate normal distributions, Shimizu (1987, 1995) and Fu- 

jikoshi and Shimizu (1989a, 1989b) obtained some asymptotic expansions around standard normal 

distribution for some mixture of multivariate normals in terms of Hermite polynomials. Die error 

bounds were also evaluated in the I, -norm in their papers. Huang and Cambanis (1979), Cambanis, 

Huang and Simons (1981), Hardin, Samorodnisky and Taqqu (1991), Rosinski (1992), Wu and Cam­

banis (1991), Ng and Fraser(1994), Cambanis and Fotopoulos (1995) approached to this problem in 

the framework of spherically symmetric distributions.

2.1 The Models

Let G(a) be a cd f with the support on Q , and let F{x,a) be a distribution function in x  for each a in 

the support of G. Assume F(x,a) is Borel measurable in a for every x. Then

8
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H g ( x ) =  \F (x,a)dC (a) (2.1.1)
n

is a distribution function, called G-mixture of F distribution, and G is referring to as a mixing distri­

bution. When G has a finite support, Ha (x) in (2.1.1) (replacing integration by summation) is

called finite G-mixture of F-distribution

We are interested in a special case when a in (2.1.1) is a scale parameter of F

Hq (x) = jF (x /a ) dG(a) with Q = [0, oo). (2.1.2)
o

This distribution is called scale mixture distribution. Particularly, when the distribution F  is a nor­

mal distribution with mean 0 and variance c 1, then (2.1.2) can be written as

Ho M  = Jo’  dG{a ) ’ (2-1 -3)

which is called scale mixture of normal distribution.

Every random variable X  with scale mixture of normal distribution has the following stochastic 

representation

X = u A l2Z ,  (2.1.4)

where A is a positive random variable associated with distribution function G(a), Z is the standard 

normal variate independent of A. The mixed variable X  has the distribution function HG(x) in 

(2.1.3).

2.2 Properties of Scale Mixtures of Normal Distributions

Let “p= j / r(x) = cta/q j dG{a), G is a cdf on [0, <x>)j be the collection o f scale mixtures o f

normal distributions, then 7  has the following properties:

Property 2.1 (Density Function and Characteristic Function). For every F e 7  which is absolutely 

continuous, it has the density function as
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/ ( * )  = j^2 traa2 J e 2aal dG(a) ,
X

(2 .2 . 1)
o

and its characteristic Junction is given by

(2 .2 .2)
o

According to Khinchine’s theorem, X  is unomodal if f X  =d Y U , where U is uniformly distrib­

uted over [0, 1], and Kis a random variable independent of U, it is easy to show that scale mixture of 

normal distributions are unimodal, hence we have the following property:

Property 2.2 (Symmetry and Unimodality). All density functions from 9  are symmetric and uni­

modal.

Property 2.3 (Upper Bound for the Density). Let f  be the density function o f a normal scale mix­

ture random variable, fo r  all a >  - 1, we have

Property 2.4 9  is closed under scale mixing operation and under addition (convolution)

Proof. It is obvious that scale mixture of scale mixture of normal distribution is still scale mixture of 

normal. The closeness under convolution is also clear if one notices

Property 2.5 (Identifiability). 9  is identifiable, that is, fo r  a n y X e  9  i f  X - d A \2Z =d A2 2Z , 

then Ax =d A2. In other words, there is a  one-to-one correspondence between X  and A.

where p a = £ ( |* |0) and ka =[(l + a)/e](Uo) * f((l + a)/2)2,Uu| 2

o

Note that V X u X2<= ? , X {+ X2 =d {_A{+ A fmZ.

10
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Property 2.6 7  is closed under weak convergence. That is, i f  F„ -> F as n -> oo, then Fe 7- In 

other words, ifX„ e  7  converges to X  weakly, thenX e 7  (Chandra, 1977).

Property 2.7 (Infinitely divisibility). For any F e 7 ,  i f  its corresponding mixing distribution G is 

infinitely divisible, then F is also infinitely divisible. (Feller, 1966). Further more, when the corre­

sponding mixing distribution G being completely monotonic, then Fe 7• is infinitely identifiable.

Property 2.8 (Kurtosis). I fX e 7 a n d  its fourth moment exists (or equivalently the second moment o f  

A exists), then the kurtosis is given by 3|l + |v a r( .4 )/£ 2(.4)jJ, which is greater than 3, the kurtosis 

fo r  normal distribution.

Property 2.9 (Moments inequality, Keilson and Steutel, 1974). For any X e 7  with finite second 

moment, we have

and equality holds i f  and only i f  the mixing distribution is degenerated.

Proof: Applying Lyapunov inequality, the result follows.

Property 2.10 (Keilson and Steutel, 1974). I f  the density function o f A [1 is log-convex on (0,oo), 

then

and if  the density function o f A 12 is log-concave on (0 ,«), then

£ 2|.V| £ 2|Zj 2

1 1
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Property 2.11 (Rate of convergence to normality, Keilson and Steutel, 1974). Define
30

piF l,F2) = / jAi{daj^f°r any Fh F2 e ?  with £ (/!,)  = £(A : ) =/, then p  defines a
o

metric (distance) in subspace o f 7- When A2=j I, i.e. X2 is normal, then p  is the distance measure

2
to normality. Further more, p (F x,<t>\ = — -. Thus, i f  the fourth moment o f X  exists, the degree o f

Ma

departure from normality is measured by square o f coefficient o f variation o f the mixing variable.

Recall that h(x) is completely monotone (c.m,) if ( -  l)"/i^(.c) >0, V n. The following theorem 

gives the necessary and sufficient condition for a distribution to be scale mixture of normal distribu­

tion based on the complete monotonicity.

Theorem 2.1 (Characterization, Kelker, 1971), A distribution F belongs to 7  i f  and only i f  its c .f

<p{t) or its density f { x )  is even function, and or f { J x )  is completely monotone on (0,oo).

Based the above theorem, for a given arandom variable, if it has explicit functional form of c.f. 

or density, we can check if it is a scale mixture of normal. Some special cases with particular mixing 

schemes are listed in the following corrollary:

Corollary 2.1 The set o f  scale mixture distributions 7  contains the following symmetric distributions

i) Symmetric a-Stable distributions (SaS), when A is a positive a/2 stable (Feller, 1966).

ii) Laplace distribution with mean 0, when A/2 has exponential distribution.

iii) Student's t distribution, when A has the inverted gamma distribution.

Tthe exponential power distributions (EPD) with p  = 0.

iv) The logistic distribution with p  = 0,when A = (2K): , andK is the asymptotic Kolmogrov dis-

30
tance statistic (Andrew and Mallows 1974). Note that A = 2(2 K 2) = 2]T Wj j  j 2, where

y-i

Wx,W2,---are iid exponential variables (Watson, 1961).

The following two theorems are from Basu (1996).

12
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Theorem 2.2 Fix the I00p-th percentile (Yl < p < \ )

a3) = { /’e  ?: F(Q)=p and Var(X) = <f},

i) I f  (Q/cr) 5  1.1906, then the class ?(p, Q; a3) is nt

ii) I f  > 1.1906, then the class 7(p, Q; a3)  is nt

As an application, suppose we obtain a set of dafc 

tile=l .0. We try to fit a scale mixture o f normal distr 

p=0.75, 0=1.0. Since Q/<y< 1.1906, <D(Q/er) > <D(C 

will not be able to find such a scale mixture o f norma

Theorem 2-3 Let Qs  = a<t>~'(p), i.e. let QN be the 

0  V  (Qn 1 °)  ^ 11906, then the class Tip, QN; a1)  is

ii) I f  {Qn /a )  > 1.1906, then the class Tip, QN; a3) a

Now we introduce the scale mixture of multivarii 

n x 1 random vector with mean 0. We say X has a jc 

butions, if X has the following stochastic representati

with A being a positive scalar random variable indep< 

positive definite covariance matrix of G. If we partit

X = , A

tion £  in conformance with G as „  , then w
U 2I z j

13
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where X, and G , are m x 1 vectors, with 1 <,m<n. Most of the properties listed above can be 

easily extended to the multivariate case. In addition, there are some other properties for the multi' 

variate scale mixture model.

Property 2.12 The jo int densityfunction o fX  in (2.2.3) can be written as

/(* )  = £ ,[(2 * 4 )" ,'2|s f /2 ex p (-* 'E -V 2 ^ )]

Property 2.13 The marginal distribution o f  X, and X 2 in (2.2.4) are also normal scale mixtures,

i.e.,

X, = , ^ " G ,  and X2 = , ^ 12G 2.

Property 2.14 E [A p]zoo # £ [ X 2"] S oo . When the 2pth moment exists, we have

* { * ' ] - £[Mlr']/£[lGf i ' ] - «[|x|;:]r(» 2)/2'r(» 2 * p ) J o r  p * \ .

where E

This equality holds because that G 'Z ’G ~ X l (n) and E ||Gfl2?, J = r(n, 2 ) /2 p r (n  2 + p).

Property 2.15 The quadratic form o f  X '2 _IX has scale mixture o f Chi-square distribution. 

This is because X T _,X / I G 'I 'G ,  and G 'L 'G  -  * 2(n).

14
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CHAPTER3

THE INTEGRAL REPRESENTATIONS OF THE CONDITIONAL 
VARIANCE FOR SCALE MIXTURES OF 

NORMAL DISTRIBUTIONS

3.1 Introduction

The distribution of an n-dimensional random vector (column) X is a scale mixture of a normal distri­

bution if X:=j A l l G, where A is a positive random variable independent of the n-dimensional 

Gaussian random (column) vector G with mean 0 and positive definite covariance matrix I .

Gupta and Huang (1981) characterized scale mixtures (variance mixtures) of normal distribu­

tions by showing an equivalence of this class and the complete monotonicity property on (0 ,«). 

Bearing this property, it was found that this family includes the Cauchy, Laplace, student’s t, sym­

metric stable (these were also found by Kelker 1971), logistic and double exponential distributions 

(Andrews and Mallows, 1974). Schoenberg (1938), Crawford (1977), and Miciewicz and Scheffer

(1990) characterized this family by showing that ifX (X  e R " ,n > 2 )  is scale mixture of multivari­

ate normal distribution, then its characteristic function, ^ x(*)» * e R n , has the following represen­

tation: <px {t) = ^ (1 121|), where HI denotes the Euclidean distance, and y/ is some function on

(0,oo). It should be added here that the family discussed by Schoenberg (1938), Crawford (1977), 

and Miciewicz and Scheffer (1990) is much broader than the family of scale mixtures of normal dis­

tributions. Keilson and Steutel (1974) characterized this family in terms of moment existence. It can

be shown that < °°» if and only if E ||X|| < oo for some p>0. For example, if A is distrib-
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uted as gamma, or beta or uniform then £'|||X|,,| < oo, V p  > 0. However, if A is totally right skewed

a/2-stable, 0<a<2, with Laplace transform £[exp (-n /l)] = e x p f-V 1) , u >  0 then £ ^ /l/’J<oo, if 

and only if p < a/ i -  In this case, X has a multivariate symmetric a-stable distribution, and

P]|Ar,|A < oo , for Pi > 0, /=1, ..., n, and p, =p < a , see Samorodnitsky and Taqqu (1990).
. < - i  J

Thus, their second moment is always infinite and so is their first absolute moment when 0 < a  S 1.

Here, we are interested in conditional variances, and these may be finite even when their un­

conditional counterparts are infinite. For 1 <>m<n, we will write X = (X |,X ,), G = ( G ,,G 2) and

1 =
f y y \  **11 **12 , where X, and G, are m-dimensional and is m x m -dimensional, i.e., I , ,  is
V 2) , I S it/

the covariance matrix of G , , etc. The conditional distribution of G , given G, is normal with mean

S ti m̂/G , anc* covariance matrix S 22 -  “ 2!S u £ |2' i e ’ the conditional mean of G , given G, 

depends linearly on G, and the conditional variance-covariance of G , given G, is constant 

(degenerate, non random) and does not depend on the value of G , :

£ [G ! |G ,]  = S 2, S mG , ,  C o v (G ,|G |) = S,2 — ^*:i^*ii *̂12:= *̂2|i • (3 .1. 1)

This is the archetypical homoscedastic example, where regressions are linear and conditional 

variances constant. However, if X is scale mixture of multivariate normal, then Hardin (1982)

showed that if X € Z.2(Q ,F,P), X has the linear regression property. In fact, he showed that the lin­

ear regression property is equivalent to spherically generated processes, to which scale mixtures of 

multivariate normal belong. He continued by showing that if X is SceS, 0 < a < 2 ,  and

dim(jp(X)j > 3, then the linear regression property and sub-Gaussian are equivalent statements.

This property is exactly the same as in the normal theory. The disagreement with the normal theory
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occurs when one looks at how the conditional variance-covariance behaves. It will be shown that 

scale mixtures of normal distributions do not have constant conditional variances, so they provide 

heteroscedastic examples, and we will examine these non-linear conditional functions.

This chapter is structured as follows. Section 3.2 presents the main results with their proofs.

gives the proofs of some of the secondary results. The auxiliary results are displayed in Section 3.5. 

3.2 The Results

Our first result shows that the conditional second moment of each component of X, given X, is 

always finite when the dimensionality of X, is two or more. Furthermore, we find a necessary and 

sufficient condition when X, is univariate, and we express the conditional covariance matrix o f X, 

given X, (under appropriate conditions) in terms of the distribution and the Laplace transform of A.

Theorem 3.1. /. The conditional second moment o j the components o f X, given X, is finite a.s. 

always when m> 2  and i f  and only i f  E^A1/2 j  < <x> when m= 1.

II. I f  m> 2. or i f  m=\ and J  < co, then

Section 3.3 demonstrates how to apply some of these results to uniform and stable cases. Section 3.4

(3.2.1)

where
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 r 4 r — • x i 0 - (3'2-2)
i M " " , ! “ pr d ^ w

III. I f  the Laplace transform LA o f A satisfies

|[0 m)um/2' ' L A(u)du c co and ^ u ml2~' L’A(u)du < , (3.2.3)

then (J. 2.2) holds and S 2 m(.t) , x > 0,can be expressed as follows

-  fZ ,'< (r: )cos(V2:crWr
$< i(* )=  -°  r — .and (3.2.4)

\ : L A( r ) ^ r ) l r

fo r m > 2,

S L .( * )  = - ------------1 1 ' ■) --------£ - •  (3 .2 .5 )

where «  the Bessel function o f the first kind with v > 0.

Proof I. To demonstrate the proof of this theorem, we reiterate some of the classical results of nor­

mal theory. For simplicity of notation, it suffices to consider the case where n-m +1, so X 2, I :2 are

scalar. Then e \ x \ |X t] = e \e {a G\\A,  G ^ X . ^ f J / f f ^ l G . j X , ] ,  and since £ [g 22|G ,] = a \  -  

S 21Sj‘llS 12 + £ j [G2|G ,] = s; +^S2,Sj'1,G 1 j 2, where i |  = a 2 -  2 2l£n S l2, wehave

£ [X 22|X, = x i] = J2£ [^ |X 1 = x1] + ( z 2II ^ t , ) \  (3.2.6)

27

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

It follows that E^X\  |X, J  < oo a.s. if and only if £[/l|X , ] < oo a.s. and by Proposition I in Section 4, 

if and only if

Jlo, i „ - * l = x p ( - i ; X :S 11X 1) r fF ,W < »  (3.2.7)

Note that for each fixed value of X,, the integrand is a continuous function of u over (0,co), and

tends to 0 as u lO  and as u t  oo if m>2  and is bounded by uv2 if m= 1. Hence the conditional

second moment is finite when m > 2 and when m = 1 is finite if and only if

I*u'n dFM(u) < oo or £ ^ l/2|< oo .

//. We have

£ [ x ,x ; |x , ]  = £ [£ [ .4 G ,G ;|^ ,G 1]|X1] = £[.4£[G 2G ;[G i ]|Xi ],

and since

^G jG S lG ,] = I 3|I + £ [G : jGl]£ [G ;|G 1] = S 2il + I 21i ; 11G 1G iS^li ; l , (3.2.8)

and using the conditional expectation it follows that,

£ [ x 2x ; |x , ]  = s 2|1£ [ / l |x i] + 5:212n1x ix ;s r i,22, = S 2i,£ [/l|X 1] + £ [X 2|X l]£[X i|X 1].

Thus the covariance is given by

Cov(X2|X ,) = £ [ x 2x ; | x , ] - Je [ x 2|XI]£[X i|X 1] = S 2|1£ [^ |X ,] ,

and by Proposition 1, £[.4|X, j = S ^ ^ X J I ^ X , ) '  with S 24j„(x) as in Theorem 3.1.//.

III. For every u > 0 and (column) vector t e R m, we have
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Putting u=0 we obtain

and since the right hand side is an integrable function of t over R m, in view of (3.2.4) we obtain

= co nst|"  LA\^ -r l y m~'dr (in polar coordinates) 

= c o n s t LA(u)una ~xdu < oo. (3.2.10)

By the inversion of the Fourier transform, we conclude that

f x (x ,) = — f e ^ L A - t ' 2 n t 
( 2 x ) m '

d t . (3.2.11)

Now differentiating both sides of (3.2.9) with respect to u > 0, we obtain

-  £ [£ [ /le -" |X , = !,]»«■ ] = L ' i » *  j

Since £<(•) is completely monotone on (0,oo), i.e., ( - 1)" 6 ^ (m)> 0, for u > 0 , it follows that - L'A 

+ e L '^ R " ) .  By (3.2.10) and (3.2.2), inversion of the Fourier trans­

form yields
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for each fixed u> 0. Since / x, (x ,) and the right hand side are continuous functions of x ( by III., 

and in (3.1.4) we consider the regular version of = x , j, which is defined by (3.2.12) for

all u>0 and x, e R ." .  Now, letting u i  0 in (3.2.12) we obtain

= (3.213)

since the left hand side of (3.2.12) converges pointwise to the left hand side of (3.2.13), and likewise 

for their right hand side by dominated convergence theorem, since L t (u) = E^e~uA] implies

L'A{u) = -E^Ae"^  |  andforall v > 0 , - £ ', ( «  + v) = £ [ ,4 e " ']  = -£ '.,(v ), as w lO ,

and £ '/ ^ - t 'S n tj eL ^ R ."1 j by (3.1.4) and (3.2.10). From (3.2.11) and (3.2.13) we obtain

-  f £ ' f  -  t'S-.tlc/t
•s.! = *,]=-------------- j j -— r— . (3.2.14)

We will now evaluate more explicitly the integrals appearing in the numerator and denominator.

Putting B = 2 ’1/2£ j/,2 and y = fit, we have i t ' I n t = t'fi'fit = y 'y  = j|y||* and
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Going to polar coordinates y = rs, r  > 0, s e U m = js e  R.":||s|| = l | , we have, with y m being surface 

measure on (J„,

Putting y, = r f l ‘ ‘x, we have ||y,||2 = r 2x \ B  15 “'x, = 2 r 2x J I n X | , and for ot=1

j ( ; e-,y,Vi(c/s) = cos(|y,|),

and for m > 2

f„ * - * > . , ( * ) - ( | y , l l )  ■

where ./„(•) is the Bessel function o f the first kind with v > 0. It follows that

^ . ( k i K 1) = ( ^ 2) f0” / ( r2 )cos(^ 2 ',l-icil(Tr , y r  -

/ 1 \ - |/2
det 1 1, ^ r ( ^ ' )

Fw((iiS n l» l )1/2)=  2 - ■ --a -----------------------------------------------------------(3.2.16)
( 2  * 1^ 1 1 * 1 )

The final expression for S] m(x) now follows from (3.2.14)-(3.2.16).

It is clear from (3.2.1) that the conditional variance-covariance of X2 given X, is proportional 

to its Gaussian counterpart, the constant conditional covariance matrix of G 2 given G , , times a 

function S 2-(B( ) , depending on the dimensionality m of X, and the distribution of A and evaluated at
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( 1/2
XJZ^'X, j ’ . Thus, the heteroscedasticity of all conditional variances and covariance have a com­

mon functional form determined by the “conditional standard deviation factor” S Ajn(x).

The expression in (3.2.2) is useful for evaluation when the distribution function of A is known 

explicitly. When this is not the case, but its Laplace transform is explicitly known, then the expres­

sions in (3.2.4)-(3.2.S) are useful as illustrated below for the stable case.

Condition (3.2.3) can be expressed in terms of moments, by using

j V - ' £ [ ,4 = E A* j ^ u ^ e - ^ d u j  = £ p * - '] r ( p ) .

Thus, condition (3.2.3) is equivalent to

£[/1_i/2] < oo and £ |.4 1/2|<oo for/w=l, and E / l ‘m/2j o o  for m> 2 . (3.2.17)

A useful alternative expression for S’2jn(.'t) can be obtained in terms of the marginal density of 

the first component of the random vector X, under the conditions in part (c) of Theorem 1.

Corollary 3.1. Let f ^ x \ / a u ) be the density o f  the first component o f  the random vector X (i.e.. the

density o f  X, when m=\) where erf, is the (1,1) element o f the covariance matrix I . Under the con­

dition in Theorem 1 .III., or (3.2.17), we have fo r  x>0,

, f* /i  (“)<*«

i J j W - V r  ( 3 ' 2 , 8 i )

k>~ x (3-2-18-i0
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s]  .(x ) = i »  ! - i  L—  (3.2.18.iii)
J* M ~ I/2_/',<,>( j r 2 +u^lu

, f V ,/2/ ‘*)(:c2 +UWM

= 4 f°  a ,  / » X ’ * * L (3118iV )J o  . ' T V  +u^du

Proof It is known that (Kelker, 1970) since X, is scale mixture of Normal distribution, i.e., has a 

spherical distribution, then the density / X| can be expressed as / X) (x,) = cm g ^ x J I ^ 'x , ) j  for all

x, * 0 ,  m > \ ,  where gm is a function on (0,oo),and cm = (2x) "* |S n | Clearly (2/rau ) 

gi(|jr|/<x,, ) is the density of the first component of X,. Since the integrand in (3.2.7) vanishes at 0, 

and A is assumed nondegenerate: P(A = 0) < 1, we have 0 <gm (x) < oo for all x  > 0 and m > 1.

k-l 2

Thus

S L { x )  = ^ T V ’ 0-2A9)

Note that since (3.2.17) is satisfied, g m_2 (*) is continuously differentiable over x > 0  for m> 1, 

with

gm-2
, . - x  f ii'*1 exp_ J[o.-> v

f  ->\ x '
I  2Uy

dFA(»)
 = -* . (3.2.20)

*«(*) g”ix)

It follows from (3.2.19) and (3.2.20) that for x>0,  1 ^ — -j-r— = and thus

0 qO
5^ m(j:)gm(.t) = j  wgm(u)c/u. Hence (3.2.19) can be expressed as follows:
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which follows,

We will now express all g„ 's in terms of g , . From the definition of gm and (3.2.19), it follows 

and thus from (3.2.21)

^ . . , w * * ' •  <3122)

It is easily checked that

•2 M/2

g j (Jt2) = " i ^ J  /0" “ ' ,,2ft(l)(*2 + “)‘f e * (3.2.23)

from which it follows that

1 f V ,/is{*)(*2 + 4 f o
'k+i(x ) = -  —— ------------ --------- — , k > \ .  (3.2.24)2 f QU-v2g r y +uy u

Thus (3.2.22)and (3.2.24) imply (3.2.18.ii) and (3.2.18.iv). These expressions of gm, m > 2, in 

terms of g , , in the more general setup of spherical distributions, are derived in Zolotarev, p.286 

(1981). Szablosky (1987) has obtained similar expressions for elliptically contoured measures.
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Also, (3.2.18.i) follows directly from (3.2.21) for m= 1 and (3.2.18.iii) follows from (3.2.21) 

and (3.2.23). Note thatg  is a functions of both m  and the density of A. However, the subscript of  A

Corollary 3.1 ties with the methods of Zolatarev (1981) and Szablowski (1986, 1987). In their 

studies they evaluated elliptically contoured measures with respect to suitable chosen marginal den­

sities or conditional variances and the distribution of X jlj 'j 'X ,, which is the case here, where the 

conditional variance is expressed with respect to the first component of the vector X ,.

We now consider in more detail the types o f heteroscedasticity provided by this model by ex­

amining the universal standard deviation function S An( x ) . We first show that under assumptions 

even more restrictive than those in part (c) of Theorem 1, the value of S Aj„(x) at x=0, as given by 

the expressions (3.2.2) or (3.2.4)-(3.2.5), exists and is finite, 5 4>m(.r) is continuous, differentiable, 

and is approximately quadratic around zero.

Corollary 3.2. I f  the equivalent assumptions (3.2.3) in Theorem 1 .III. or (3.2.17) hold for m+2, then 

we have

is omitted for easing the reading of the content, since this does not change for different values of m.

(3.2.25)

where 0 < 5 <jb(0)<qo and SAjt) (0), CAm are given in terms o f moments o f A: p Ap = £ [ /fp] with 

-  oo < p  < oo o r  follows

m/2+1
(3.2.26)

and in terms o f the Laplace transform o f A by using
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* A--tn ~ 2r(ki2)  ' i  = l3~ - ' m* 2 0-221)

where M k( f )  = / “ r*_1y ( r 2)c*-.

Proof. From (3.2.19) we can write

(^) g„-2(0)
s .U * )- *U o) =

gm(*) g„(0)

_ [g„-2(-r) -  gm-:(°)]g^(0) -  gM-2(°)[gm(^) ~ g W(°)] 

gn (x)gm(°)

= gw(.r)gm(Q){~ + ^ -2 (°)|o '-v̂ : ( > ’)^}

and using Ijm -^  \*0ygm{y)dy = lim *g"  ̂  = ^ g m(0) we obtain

W  " ^ - ( ° ) ]  = ^ ( ° )  -  d ( 0 ) }  ■

But the left hand side is also lim— ^ ^ ( jc) -  (O ^ S ^ O ) , and thus

lim 1 fg f t)  S  ( o ) l - g,"-2^ M+2̂ " gm^  
5 B , . I S « W  4g - ( 0 ) SI'i! (0) '

The expression in Corollary 3.2 follows by using £„(()) = J  =  n A. ma .
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To express 5  ̂ ( 0 )  and CA m in terms of the Laplace transform of A, we could use the expres­

sions (3.2.4)-(3.2.5) instead of (3.2.2) and follow a similar line of argument, or equivalently, we 

could express the moments fiAp in terms of the Laplace transform LA. This is accomplished by 

evaluating

e '^ d x 2r l y l f
- m l  2

]■

for m > 1, so that n A _m/2 = 2M„(LA) / r { m l  2), m> 1. This works for all the moments required in

(3.2.25), with the exception of {iAV2 and fj0 = 1. This MA,m.' al°ng w>lh MA.-m,2 y can be ex­

pressed using

= - f i r ~ ' L ' A( r ) d r  = J V ’1 £[.•<*-'’ ( |rfr

i e

2
for m = 1, leading to f tAAl2 = -j= L'A}.

\ x

When the assumption in Corollary 3.2 is not satisfied, i.e., when E^A'm,l' { j = o o , then a wide

variety of (non-quadratic) asymptotic behavior at zero and at infinity is still possible. This results in 

a wide variety of heteroscedastic models illustrated in two examples in Section 3.3.

The following corollary describes the behavior of the factor S Aj„(x) with respect to x  for a given 

dimensionality. Furthermore, it shows how the higher the dimension we condition on, the lower the 

value of S Ajh (jc) becomes, for a given value of Jt e  R .
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Corollary 3.3. I f  FA(0) =0, then i) for any m > I, S Am(x) is non-decreasing in x>0, and 

ii) fo r  any xZ  0. S A m(x) is non-increasing in m>\ .

Proof, (i). Since

' gm-2 {*)) g'm-l (*)g» (*) "  gm-2 (*)g*(-T)± S * J x )  = —  
dx AjnK } dx g«(*) ) gm(X)

T T T  f g - 2  (*)gm .2  ( * )  ~ g l  ( * ) }  - *

It follows that S A m(.r) is non-decreasing if and only if the within the brackets quantity is greater or 

equal to zero, or

g«-2(*)g«*2 ( * ) s  £«(*) • (3.2.28)

To show this, we proceed as follows. Let A x > 0 denote the random variable associated with 

the random variable A, via the probability measure relationship

u ' e ^ d F ^ u )
/.<Adu) =

Assume F.,(0) = 0 to avoid some trivial difficulties.

Hence the necessary and sufficient condition (3.2.28) may be expressed in the form

o r e q u i v a l e n t | y -  4 ^ 2 1 - £ M 2 ’

which is always true.
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ii) To show that is non-increasing with respect to m = 1, 2,••• for fixed value of x e R * , it

is necessary and sufficient to show that m=l, 2 , . . . ,  for fixed ,r>0, or equivalently

from (3.2.19), we need to show that g„,*i(.t)g*_2(*) ^  g„(*)g*-i(*) •

As in part (i), let Ax , > 0 denote the random variable associated with the random variable A, 

and let dAx{du)be modified version of vAjt{du) defined as follows.

. . u '{ '* e 2ud F j u )
* , , H  = --------------

•00    ,  »

l e2mdF4 u)

Once again, the necessary and sufficient condition that the last inequality holds is to show that

f [ 0 , )  u6 << H  U  M ‘ / :  9  ̂  5  J i o „  "  H  •

or equivalently

£[/!,,, ] £ [ < r ] ^ < !,]- (3-2.29)

However the last inequality is always true, since P is a non decreasing function o fp>0,

and ^  , and £ | ^ J t j ^  - Thus, by multiplying the last two inequalities,

(3.2.29) is now evident.

This completes the proof of Corollary 3.3.
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3.3. Examples

In this section we analyze the behavior of in two specific cases, 1) when the random

variable A is uniform and 2) when it is a positive stable. All the proofs of the following results will 

be deferred to Section 3.4.

3.3.1 UNIFORM SCALE MIXTURE. Here A is uniformly distributed over [a, A], 0 <, a < b < oo. 

First let a>0. Then, £ | / l /’ j < o o  for all -  oo < p  < o o , so by Corollary 3.1., all SAm(x) are approxi­

mately quadratic around zero, i.e, (3.1.9) and (3.1.10) hold with

bp*X- a ^  c „ , . , ! t (b
V a.p = 7 T7I :  for al1 P e ( - « ,» )  except p  = -1, ftA. t =   In -

(p  + l) (b -a )  b - a  \a

It is not hard to see that

a vl <,SAjH{ x )Z b [n for all m=\, 2,.... (3.3.1)

And at infinity all S„(x) tend to the same constant:

I'™ „ « S AjH(x) = b'n- ,  for all /w=l, 2,.... (3.3.2)

Specifically, it is shown that for sufficiently large x

s .U * )  -

b xn[ 1 -  + o(jc'2 ) for m 5*4

1/2 I 1+ o(jc ) form = 4.

Also from Corollary 3.3, S Ajn(x), m > l, increases from ^ ^ (O )  to bu l .

(3.3.3)
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l et a=0 Then, E^AP j < oo only for -  1 < p  < oo and thus £|/r™ /2 '* j = oo for all m > 1, so Corollary 

1 never applies. In this case, the limiting value of S A m(x) at infinity vanishes except when m= I :

1/2

I'™,— S .o .(*)= l 3 J , and lim ,^ , =0 . m> 2 . (3.3.4)

The limiting value at zero is as (3.2 .25). Around infinity, S Ajn(x) is approximately linear for m> 5, 

whereas for smaller values of m it rises faster from its value at zero, the precise asymptotic expres­

sions are presented as follows:

1/2

S,u (x) = b '2( ln ^ -
- 1 / 2 - 1 / 2  A

+ o
( f

ln -

( 3 3 .5 .i)

(3.3 .5 .ii)

1/2

SAA (x) = r + In + o(x In -^),

(3.3.5.iii)

(3 .3 .5 .iv)

•S,.„(*) =
■Jm- 4

m-l
i -

2(24)
m/2 -2 pi HI

2 "

+ o(xm), m > 5,

where y=0.57721, is the Euler’s constant.

(3..3.5.V)

3.3.2 STABLE SCALE MIXTURE. Here A ~ S a^cos(-2p),l,0j, 0 < a < 2 ,  i.e., A is stable totally

[
1e~M = e~‘ . It will be shown that the scale factor, SAj„[x) , which de­

termines the shape of heteroscedasticity, can be expressed in an additive form with the dominant
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term being exactly the one we have achieved at infinity. On the other hand, the other term can be 

shown to explode to infinity with respect to “x”, except at a= l, which is constant. This result sup­

ports Cioczek-Georges and Taqqu’s (1993) arguments for m= I.

It can be shown that the scale factor associated with the variance covariance matrix,

Cov(X ,|X ,), X, eR ™ , m> 2 has the following properties:

.. 1 / i  i  />
I 'm ,- . .  r~L = ------------ •  0-3.6)

x* m + a - 2

The following result connects (3.3.6) by proving an additive relation, where the limiting term show­

ing in (3.3.6) is one of the two terms.

, . . C(x; a , m) x2
S ^ X^ 4 i J a - 2 i I - r ^ ~ y  <3 J 7 )

where C(x;a,m) = -----------------------------------. -  -y , and J v(.x) is the Bessel function

o f  the first kind. It is also shown that

I'm ,-..
x 2

m + a - 2

oo for a  *■ 1

I P . (3.3.8)for a  = 1. '
4 (m -1)

Rem a r k s . When a  = l ,  the functional form of S ^ ( x ) ,  form > 2 , becomes a pure quadratic func­

tion. This was also noticed by Cioczek-Georges and Taqqu (1993) for m= 1 when they studied the 

behavior of their stable conditional variance. Therefore, for a  = 1, the form is deduced to be
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s l A x) = m - \
jc  +  -  

4
, m > 2 . (3.3.9)

For the reason of completeness, we shall state the case m=1. This was approached by both Wu 

and Cambanis (1992) and Cioczek-Georges and Taqqu (1993) for the stable case. Here, it will be 

presented in the sub-Gaussian case. For m= 1 the scale factor associated with the conditional vari­

ance, Var{X21X x) , has the following properties:

lim. _ 1 C(x; a, 1) x 2
and lim.

a  -1
= oo, (3.3.10)

where C(.r;a,l) = — ------- ;

J [ 0 . V  co< ^ K

3.4 Proofs and Secondary Results

In the proof of Theorem 3.1, we use the following form of the regular conditional distribution of A 

given X,.

PROPOSITION I . For each non-negative measurable Junction g (- )  we have

I , . * , ,  .£[g(/0 |X , = * ,J  = --------------------- — ------    , (3.4.1)

for almost every X, e R " ,  where F {( )  is the distribution function o f A.
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Proof. It is well known that the joint density function of X, e R m with X, =d A G , , where G, 

is a centered Gaussian random vector with covariance matrix Z ,, is of the form:

/ x ' J m exp( ~ i x ' x> J ^ ( “) ■
(3.4.2)

The rest of the proof is a simple consequence of the conditional expectation and the formula of the 

joint distribution o f X, and A.

Proof o f  (3.3.1). The proof of this follows by just noting that

S2 (x) = ^ '
’  r x  1 2 a

Lj/24 y  ^
- y  r t i / 2 - 3fT , ..

U m * - y dy

V \n-ae->ymll- ldy
 L  = b

C *  a  - y  m /2  - 2  j

W  y  *J x } H h
t x : H a

=  a .

Proof o f  (3.3.2), (3.3.3), and (3.3.4). It is known (see e.g. Gradshteyn and Ryzhik, 1980, p.943) that

for sufficiently large values of x and for any a e R ,  x~ia~l)exr(a ,x)=  1 - - — - + -------^ ——
x x ‘

+ o(x_2j ,  where T(a,.r)= j"e~yy a~lcfy, is the incomplete gamma function. Hence, for any m ex­

cept m = 4, 2 we have

/ . _*-4 .2 . . _■»< ,2
( S )  1 e “ ( £ )  1
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Taking the square root in both sides, the answer follows immediately.

P r o o f  f o r m =  4. Call T (0 ,jc) =  • Hence, via Lemma 1

I s ) - r (1’ ll)]

This completes the proof for m=4.

Proof fo r  m=2. In exactly the same fashion as above, we note that

'(»■ g M 0' a )  M M ' 2)
= b 1

-r ‘ e
^ 0 5/2 ^

Proof o f 0 3 -S i)  If m=l, it can be seen that — ^ ---------------- . Now using integration by
, -y

parts we have that j “y ^ d y  = -  j*e~yy~adyj  and Lemma 3.2, it follows that the expression

above may be written

2b 1 x 2 b 1 x 2

3 3 l - £  + 0( * 2) b 4 M * 1
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Proof o f  (3.3.5.ii) Repeating the same arguments, we may also have that

=

x  /■«
y  W ~la~ydy

C ,
= w

Thus, since

r« e ‘“ 1 / \j  du = - y  + In — -i- x + ol.rI, jc>0,
u JC

(Hardy 1949, p27), and e* = I + x + o(.x), it implies that

1 - + 0
In(2£/;<r) |jn (26  / x 1

s M * )  =
jc /26

Proof o f  (3.3.5.v). For m>5, we just utilize (3.4.4),

m - 4

m-, ( ' ! » n  i ..

/ * - /n V /  . c o  /w - 4  9  r m - " > \  m ~ -

1 ^ , - w  M - r )  ( , = / ) -

' - y y + t
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(3.4.3)

')

)
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m-l
l -

m-- 4  1 (2b)m‘l ~2r(m  / 2 - 1)

This completes the proof of (3.5.5.v).

In establishing Theorem 3.2, we are aided by using some ideas from the Tauberian Theorem 

found in Samorodnisky and Taqqu (1994). We incorporate relations and identities given in Cam- 

banis and Fotopoulos (1994), and we utilize various properties of the Bessel family. We continue by 

first resolving Theorem 3.1 and then Lemma 3.3.

Proof o f  (3.3.6) Since the choice of A is such that A -  Sa 2 (<r, 1, 0), 0 < a < 2 , a  > 0, we have

that

P (A > x)~
ma  2

' ( l - 4 ) c o s f
—u 2 —o 2

X  =  C a %a x  a s  x  0 0  • (3.4.5)

At this point we are interested to know the behavior of g OT(.t) as x —► oo occurred in (3.3.14) with 

the scalar being stable, and consequently to determine the behavior of S] OT(.v) for large arguments of 

x. We shall cover both cases m > 2 with a e(0, 2), and m = 1 with a e(l, 2). Using integration by

parts, it follows that

= - u  2e~lu P{A>u)
x_̂

u 2 e 2u

=  f r
m i

 U 2 +IT-U 27 2 P(A > ujdu
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*  X — — r

= (Z )  2 f e"2.
\  2 J  J Jo, oo) -?(£)

m+2
IT

. 2 

- ( * )  ’ J,
."■V

[ 0 .  oo)

/Ft-2 «
~ ^ y  2 + >'2 (3.4.6)

In connection (3.3.27), it follows that for m> 2 , a €(0, 2) and m = 1, a e(l.

m-2+a f - >

~ ca,a
( 2^ X

U ’j
f e - y .  
[0,*)

m+a-2
m ~ y  

~ i y
>dy

=  c,
'  2 ̂  .t

o\a

m-2+a
2 /w + a t  a 

2 ) 1

which leads to

■<T,a
( 2 \ 

X

u ,

m-4+a
2 ^  m -2  + a

'(T,a

m-2+a
r ^ — ,
\  -

m + a - 2
m + a

This completes the proof of part (3.3.6).

(3.4.7)

(3.4.8)

=  00 .REMARK. Obviously, if m= \ and a e(0, 1), then E^AX 2J = ^ u ' 2 exp dFA(u) =

This follows from the fact that «12/>(^>m )Too as u-> oo, this is true, because P(A > u)-~ 

, as u -> oo for a e (0 ,l) . This concludes that E^AX 2] = oo .caau 1 -> 0 0

Proof o f (3.3.7). For simplicity, we set a =
(  \  1o O’
vCOS'^y

=  1 .
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Call

A(x;a,m ) =
_ / M e' ' v r y - f  (■ & " )*

Jr.. ’

f e-r“ r ' ^  J.Jyf2xr)cJr
B(x-a ,m) = g(/w + g - 2 ) y J l x  [° ” 1 - - -

;[°-

= ( m  +  a  -  2 ) m V 2 x S 2 „ ( . * ) ,

r- fro
C(jc;a,/w) = a 2 f  >/2jc-L^” 1

J(o

From Lemma 3.3, we obtain that

{m + a  -  2)mj2xS]j„(x) = -.4(.r; a, m) + /?(*; a , m) +

= C{x\ a ,m )~  B(x; a , m) + B(x; a,m)+ f  (V2xj = C(.t; a , m) + 2 (m -  l).r2,

This completes the proof of part (3,3.7).

Proof o f  (3.3.8). For convenience, we set X = V2x . From (3.4.13), it follows that

- ( i f  m * j— 4

a 2 J[o.«)e * u 1 J - ^ \ u)du _ a }  ;V(jc; a , m )
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(3.4.9)

(3.4.10)

(3.4.12)

(3.4.13)

(3.4.14)
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We first examine N[x\a ,m  ) . It is clear that

t f ( * ; a , » i ) =  J[oa) + J(a b) = / , + / , ,  for A =A (A ). (3.4.15)

We take A / A < 1, A / A -» 0, as 4  T oo and both A and A tend to infinity. It can be checked that

1)

~ - y  / [ 0 . a , "  ! J - A u ) d u + 2 ( 3 4 - , 6 >

6~ “  1since as x  -10 -----------= x a~' +

Obviously, the members on the right hand side of (3.4.16) are in the form of Lemma 3.5. From 

Lemmas 3.7 and 3.8, it can be seen that the dominant contribution of the right hand side of Lemma 

3.6 is emanating from “cUv_{{a)SM V(a)".

From Lemma 3.6 and 3.8, we have that as x -*  oo

J v(x) = y !* cos( x - 2f i;r) +0(JC‘l/:)» and Jr""1 + 0(-’r '" 2) forp= 1. (3.4.17

In conjunction with Lemma 3.5 and (3.4.16), (3.4.17) becomes

; i - ^ c o s f A - S f l / r ) (3.4.18)

Next, we consider/2. By Lemma 3.6

h  = = uKa' ' )d i p . , / '

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

= _e-U  A2(a ' l)+V ? (A )-  •/,(«)</ , - ( ! ) “ tt2( - > )

= _e "(-i) A2(a ~1)+2'y * (A )+  —  f e ^  u ^ a ^+2J„(u)du 
2 Xa 2

= -2{a -  l) f e ^  u2a 2+2 J J u )d u = I2\ + a /22 - 2 ( f l r - l ) /2j ,  say-

In view of (3.4.16) and (3.4.17), we obtain

r “  . . m + 4 a - 5

72 i '“ V J cos(A ~ 24d ;r )A 2 ’

To obtain /22, some additional algebra is needed. From (3.4.16)

/w-6<j -5

"  v/r oo) a v / r  J

« -4 < i-S“ „-y.

m + 6 a = i  _ ( s \ a  ,  m * 4 a -5  m . 4 a - 5

-iV?i 7 - ‘ (i) i ’ ' i £ *  1 ■

In exactly the same way we continue for / :3,

w + 2 ii-5 m * 2 u -5

Combining (3.4.16), (3.4.18M3.4.22), (3.4.15) becomes

1 [c, ^ i  + c2A2(a_1) + c3AaAa' 2

where c„ c2, and c3 are positive suitable constants.

We proceed by investigating the behavior of the denominator.
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(3.4.19)

(3.4.20)

(3.4.21)

(3.4.22)

(3.4.23)
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+ / |a. . ,  «y-

Using identical arguments as before and Lemma 3.6, we have that

'< - r  fp.il-' ^ r l y ',J v (“V“ +

~ J l ± .  cos( A -  ^  ;r)A"~2~ + cos^A -  ^  /r) A 2 .

Applying similar ideas as in (3.4.19), it follows that

JA\“ m ,  ./«.)“ m+2a-2
/ ,  = -e  \ x> A2y„(A ) + - -̂ f e u ;  u 2 J n {u)du ~ - l 2\ +cdi2^ say-

i /l J A. ®) i

Clearly,

l i\ " yfx cos(A -  ^  ̂ t)a"2 ' ,

and

, -(")a 9L*-Mz* I— / \
/ 21 ~ — f e u 2 du~  ,/-=• c o s lA - ^ t f jA  2 2- A" J[a.*) V/r "V 4 )

Combining (3.4.25)-(3.4.28), (3.4.24) becomes

D (X\a,m )~  >/ iA TJ[-^-cos(A-a^«-)Aa + a

In connection with (3.3.44) and (3.3.50), (3.3.35) becomes

j jC (x - ,a ,m )  ~ c 1( ! ) 2,“‘1) + c2(A)a' 2 + c3( | ) \  

where c,, c2, and c3 are positive constants. This completes the proof o f (3.3.8).
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(3.4.24)

(3.4.25)

(3.4.26)

(3.4.27)

(3.4.28)

(3.4.29)

(4.30)
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3.5 Auxiliary Results

LEMMA 3.1: For sufficiently large x.

Proof. Note that

e x J* - — du = f " —— dv = — f — -------dv = ~ f  f0 + f 1
)x u * °v  + x x * ° \  + v / x  x ' °  '

- ;  r,j- v J7j v v * +0(I-)+o(e-)=i r,j- ')' £+i‘-y
This completes the proof of the Lemma 3.1.

Lemma 3.2: Fora<l,

x ae* —-dy  = — — t““ —- + o(.t2) as .t lO .
y a a ( l - a )  ' '

Proof. This is an outcome of a simple integration by parts arguments. 

LEMMA 3.3. For any k=0, 1,2,... the following recurrent relations are true

“> ( 7 5 : ) -  ( -  *)* ■
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LEM MA 3 .4 . Let / ( A ;  m, a) = J ao)e ' rV'"*a_1 f jo ^cosJ-Jrcos^Jsin" SdQdr. Then

m
\2

i) a — ti l— pr /(A; m, a) = X [ e ' r r 1 J„„i (Ar)dr 
A r ( ^ )  J [ ° “ ) “

n
( 4 \ 2  r a  m * 2 a - *

i i ) A — ^ — pr- l(A; m, a)= (m  + a - 2 ) \  e ' r r 2 J m. 2(Ar)dr
^ r ( mP }  2

- a  f e~'“ r 2 J m. 2(Ar)dr.
*[0. 00) 2 V '

Proof, i) Via Lemma 3.2 i), and a simple integration by parts, we proceed as follows.

n
I — 0 a  r n _ + m U - i  »  n i

a‘ m> = a i|o .*)e "r r  '■  j ' S w r = -\< s.»)r '-j ' S >' y e

0 i> (  \ ^  |  0 (J ^

= i[o.*)e"  { - r * i J ^ * ' ) )  = / i f[o .,)e"r r '-J ^ ) d r -

This completes the proof of i).

ii) Using Lemma 3.2 ii), we have that

m

* /(A; a ’ m) -
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m Q m T £ U —*• m Q  5

" t  W '  r  2 J ' - A ArV r  -  L , r r 2

m a m *2a-A  f  f  „ u  m * 2 < i - 2

0  a  <w + 2 a - 4  *  j  > _ _ _ _ i

= 2T 2 /|o ,«)e ' r r  '  '  ’ J f ^ ) dr

♦(f * “ - ' H  W /[o .» )e " V “ 2

+ 4 ( a - l )

= (m + ° - 2)f[o.x)c" % '  ! •/ V <*■>*•

This completes the proof of Lemma 3.3.

Lemma 3.5. (Gradsteyn and Ryzhik, 1980, p. 684 eq. 6.56.13). For a> 0 and /u + v > 0 , the fo l­

lowing is always true

J[o. = J|o.

r ( ' T - )= (v + f i - \ ) * / v(a) + (a )- aJv_{{a )S ^v {a) + 2"

where S^ v{x) is Lommel'sJunction.

LEM MA 3 .6 . (Gradsteyn and Ryzhik, 1980, p. 683 eq. 6.56.5). For v>0, the following equality holds 

holds

a ^ (0 .l)JCV‘'-'(a ’JC>& = f[0.a)JCV-*(JC)<& = a V jA a )-
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LEMMA 3.7 . (Abramowitz and Stegun, 1972, p. 364). When v is fixed and

where % = x v + j);r, p  = 4 v2.

r f .  r) I ( " - ' X " - 9) , (A -  IX^ -  -  2SX//-  49)
2 !(8 jc) :  4 ! ( 8 * ) ‘

and

V '  3 !(8 .t)

LEMMA 3 .8 . (Gradsteyn and Ryzhik, 1980, p. 986 eq. 8.576). I f  p ± v  is not a positive odd integer, 

then

S . .M  -  Z H. (~ '  * *  + *  ̂H H i  -1  *  -  i » + « ) » p r , . - , ,  y
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CHAPTER 4

FORM OF THE CONDITIONAL VARIANCE FOR GAMMA 
MIXTURES OF NORMAL DISTRIBUTIONS

4.1 Introduction

In Chapter 3, we studied the behavior of the scale mixtures of multivariate normal distributions 

under conditioning. The mathematical expressions for the conditional variance of scale mixture of 

normal distributions are developed with integral representations in a rather general setup and in an 

abstract manner. The complexity of functional form of conditional variance-covariance often makes 

it hard to manage in general. However, if some additional information is available, say, if the distri­

bution of the mixing variable is given, we may be able to derive the conditional variance in a explicit 

form. As an example, we discussed the asymptotic properties at both around the origin and for large 

arguments when the scale mixing variables are Uniform and a-stable in Chapter 3. Experiencing the 

richness o f these special cases, we attempt here to give a complete picture of the gamma scale mix­

ture o f multivariate normal distributions under conditioning. Since the gamma family is a quite rich 

family, which includes a lot of important distributions and has many applications in statistical mod­

eling, it is worthwhile to study the asymptotic behaviors of conditional variance for the gamma scale 

mixture o f normal distributions. In contrast to the conditional variance of multivariate normal distri­

bution, which is degenerate (non-random), the conditional variance of gamma scale mixture of mul­

tivariate normal distributions is non-constant. This chapter we focus on the investigation of condi­

tional variance for a scale mixture o f normal distribution with the mixing variable being Gamma. 

We show that the results are reduced to a simple function, which is related to the modified Bessel 

functions. We make no moment assumptions in our analysis.
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R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

This chapter is organized as follows. Basic definitions and general discussion are given in Sec­

tion 4.2. Explicit formula for the conditional variance with various asymptotic results and expanded 

discussion on the invertability issue are given in Section 4.3. In Section 4.4 we provide all the 

proofs. Section 4.5 displays graphs of various combinations of parameters of the non-constant con­

ditional standard deviation.

4.2 Background

Let X = (A',, . . . ,X n) be a (non-degenerate) random vector in R "  expressed by the stochastic repre­

sentation X = A 12G , where A is Gamma( 1, v), v > 0 and G is multivariate normal with £[G] = 0 

and Cov(G)= Z , with Z being a non-singular symmetric n x n  matrix. It can be seen that£^X,jX, j

exists a.s. and ^jX ilX , j = Z ^Z ^X , a.s. for X, e R m and m<n, and Z2I and I , ,  are (n - m j x m  

and m x n t  partition matrices of I , respectively. It was shown that Cov(X2|X ,) = £ ^ |X ,  |Z 2|1

a.s., where I 2|| = Z22 - I 2II ^ S 12 and £ [^ |X , = x,] = S2,„ ( ( x ^ 'x , ) ’ ‘j  a.e. with S.!;.m(x),

x > 0 . It was also shown in Chapter 3 that if m > 2 or if m = I and E^A 1/2 j  < oo, S .^ ( x ) , x>0, is 

finite for fixed x , it is non-decreasing of x 2  o , and for any x > 0, it is non-increasing for m £ 1.

If A is Gamma([, v), v > 0 , we shall provide the exact expression of S ^ x ) ,  and we shall give

its limiting behavior at both zero and infinity. We shall support our analysis with various graphs at 

various combinations at m and v .
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4.3 Development

We now investigate and discuss the functional form of 5 ^ ( x ) ,  .t>0, when the mixing variable is 

Gamma( 1, vj, v > 0 . Our result presents a simple expression for and we provide its limit­

ing form at both zero and infinity.

Theorem 4.1 Let X = ^ I!G e R " ,  n> 2 be a scale mixture o f normal distribution, with A ~ 

Gamma( 1, v), v > 0.

I. The conditional second moment o f the component X2 given X , is always finite, and it is given by

C0v(X2|X1) = I 21Is 5 .^ ( x iL r ;X 1) ! j ,  a.s..

x K . J J i x )
where 5 ^ m(x) = —=r —-— v 1 , x>0, and Kv() is the modified Bessel function or Heine's

v 2 Km__v\d2xj

function.

II. I f  x i  0 and i f  I = v - \ ,  then

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

x

727
=  +  o(x) .

I* i

r ( /  + 1) ' t

+ o

In
Ix

In
1

V V x l J

///. //" .t t  oo, ancf i f  I = f - v -  1, /Aen

/ o r  /  > 0 ,

, f o r  1 = 0,

f o r  I < 0  a n < i  /  +  1 >  0 ,

f o r  I +  1 =  0 ,  

f o r  I + 1 <  0 .

Discussion: In Chapter 3, it was shown that if the expression of the density of the scale variable is

available, then the minimum conditions required for to exist is only £ ^ ,/2 j < o o  for m = I .

However, if the expression of the Laplace transform is available, then we need to check some inte- 

grability conditions. Since the Laplace transform for gamma function is known, it is of interest to see 

what conditions are needed such that (3.1.4) equals (3.1.6) and (3.1.7) in Chapter 3.

Since J*sin21' 9  cos(zcosi9)</i9 = + ^ ( r ) ,  Re(v) > -  } , where J v{z) is the

Bessel function of the first kind, it follows that (3.1.7) can be expressed as

f  r mn L i r 1 ) j .^  (J i x A d r
52 (jc) = ^  v > ».V---------- *>o,

i 0) r m,lL. \ r 2) J ._f ^ l 2 x r y r
(4.3.1)
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where LA{-) is the Laplace transform of A .

Note that . Suppose that A ~Gamma{\,v), then = ( l + r 2) . In

light of the above remarks, equation (4.3.1) may now be written as

f r  ‘ y . J V L r r V l+ r 2) ( ] dr 
5 2̂ ,(jc) = -  - ------------- A------- 1---------- , x>0. (4.3.2)

2 \?mnĵ {axrlx+rlYdr

.* ,tv* ' julat\dt ctMz v~' / v  / * , / \
It is known that f -------- 1 , =      K v_u(az) for a  > 0, /?e(r)>0, and - l < R e ( v ) <

J o (r2 + a 2)" r ' f y  + l) 1 W  W

2R *M  + y2 (see e.g., Abramowitz and Stegun, eq. 11.4.44, p. 488). This implies that

r K . v ,(>/2jc)
S 2 „,(*) = J L  >' I , for 2 < m < A v -  1, * > 0. (4.3.3)

'  V2

Next, we shall investigate whether S 4j„(x) satisfies (4.3.3) for m = 1 and 2. For m = I , we have

that

-  rc o s fV I-rrV l+ r2) " '" '^
5 2 „(x)= 2 °  -     , x>0. (4.3.4)

U  J"cos|>/2.tr)(l + r 2y V dr

.* cos(xrWr tt-'Ax 2)" i
Since f -----  — V K J jc), for R e m > — and. t>0 (see e.g., Abramowitz and

J° ( u  <’ )"■■ r ( ‘, + H) u  y>  2

Stegun, eq. 9.6.25, p. 376), the proof for m = 1 easily follows.

To see for m = 2, we observe that

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

„ F r jA 4 2 x r \ \  + r 1X''~ dr 
S 2A' 2(x)  = -  h -------L — A-------- L _ _ ,  x >0, (4.3.5)

and the solution follows from eq. 11.4.44 in Abramowitz and Stegun. Therefore (4.3.3) holds for 

I < m < 4 v - 1, x > 0.

To make sure that condition (3.1.5) agrees with 1 £ m < 4v  -  1, we consider the following. Since 

u r l LA(u) and u r 'L A{u} e l J ( 0 ,  oo) it implies that u 1 ' / ( l  + u)v e L l (0, qo) . However, this

function is integrable if and only if 0 £ m < 2v, which agrees with what we found above. Specifi­

cally, we note that the range of m is contained to that we have shown in (3.3.2), (3.3.4) and (3.3.5), 

respectively.

In light of the discussion, it is worth noting that 5 ^ ( .x )  may be expressed in a more revealing 

form. We shall present this result in a form of corollary.

Corollary 4.1. For 1 <. m < 4v -  1, and A ~ Gamma(\, v).

. .  m 
■f j - P

V̂ dr

Jcy ilJ.i2(J2xr')f\ + riy"P~'dr ^
, x>0, (4.3.6)

fo r  p  e N .

Proof. Note tha t, if 2 2 /« < 4 v - 1, then by continuously integrating by parts, one can obtain that
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± 3 . _ j

, x>0. (4.3.7)

Substituting (4.3.7) into (4.3.2), the result follows immediately. The cases for m = 1 or 2 are treated 

separately. Again both of them reveal the same conclusion. This completes the proof of the corol­

lary.

4.4 Proofs

Since A -  Gamma{\, v) and £ ^ pJ<oo, for/? > - 1 ,  (3.1.4) may be written as

It is known that

J o "  e X P
s 2<A*)=

- u -
2 u j

du

v—l

J o “  e x P

.t>0.

-  u -
2uj

du
(4.4.1)

m l0  - H t ' + y - l

J o  “  e x P - u -
2 u)

du = l [ ^ - X j Km ^-J2x),x>0  (4.4.2)

(see e.g., Gradshteyn and Ryzhik, eq. 3.471.9, p. 340). In view of (4.4.2), the proof o f part I of the 

Theorem 4.1 is now completed.

To show part II of the theorem, we utilize the following approximation

Mx)={r(v,)Qjc) +o(Jt“')’ ReW>0’ (4.4.3)
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for sufficiently small arguments of x > 0 ,  (see e.g., Abramowitz and Stegun, eq. 9.6.8, p. 375). 

Thus, setting / = y - v ' - l > 0 , i t  can be noticed that

w - i  2 r t‘i s  r 2 ) " + < x " )
. R  „  I R A  . R l _ „  . , /  / r \ - ( ' * 0  l x -(M )\ 21 \  !y/2 7 2  1  r ( ,  + 7 2 +  o(

If / = 0 , we have that K0(z) = Inz ' \  as z 1 0  (see e.g., Abramowitz and Stegun, eq. 9.6.8, p.375). 

Hence, we have that

U  ^  '2 ( x f i ) - \ o { , - ' )  2  U  '  J 1 ’

If / < 0 and / + I > 0 , then, since £.„(■) = £,.()» we have that

tf ,(V2x) _  t  K_,(>/2x)

V 2  K m ( J 2 x )  J 2 K m ( J 2 x )

1

_ x  ____2 r ( - p ( *  t f + j * ' )  _ [ - ^ V 1'"1 r ( - 0  | ,
|r ( /  + !)(x V2)“ +o{x-«'*■>) r('+lf ° '

I f /  + 1 = 0 ,

1 I R Y X

S> m - J L   + / — !— )

(4.4.4)

(4.4.5)

and if / + 1 < 0 ,

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

K j y f 2 x )  ' f i ) i + 0 ( Jc/)
S 2Am(x)  =  ^ =  ------------------- = -~ ------     u  n ~ T  T = - ( / + ,) + 0( 1)* (4 -4-6)

* - ( f « ) ( ^ * )  1  r ( ~  +  1) ) (x  * + ° ( Jt(,+l'

and thus to the conclusion o f part II.

Finally, to show part III, we use the known approximation for large arguments,

*(2 z)* k \T { v -k  + '<) n ! r (v '-« +
(4.4.7).

where 0 £ |0| £ 1, v and z real and n £ v -  ^  (see e.g., Grandshteyn and Ryzhik, eq. 8 . 451.6, p. 963). 

In view of (4.4.7) and setting / = f  -  v -  I , we have that

i r .  (*®» r*I(7+?’ ( A -  *  * ! f (<-*  + L:) n ! r ( / - n t  ■,)

^ i ; W ‘ r<'+*+IV *  r(! ' n' :VI k \ r ( i - k  + \ )  ' n \ r ( l - n  + \ )

for 0  <, \0,\ £ 1 , and for i=l or 2 .

Thus, as x  t  o o ,  we express the denominator of (4.4.8) as "1 + a " . We then expand this expres­

sion in a geometric series, and we keep only the first two terms. After these operations we proceed 

with the following

AjnK) V2{ 2>/2jc r ( / - 1 +>2) / - l + H. ■01

4.4.9)

This completes the proof of Theorem 4.1.
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4.5 Discussion

In this section we offer graphical presentations o f the J e [ a \X 1 = x, j with jc, S _I jc, = x > 0 , for se­

lected values of /  = y  -  v -  1, and for x between 0 and 10. In producing the figures that follow, we 

have chosen to reduce the parameter space considerably, but in a way that we do not lose the general 

character of this function. For example, we view S ^ x )  as a function of / and x  only, instead of m, 

v ,  and x. From Figure I, it is clear that as / decreases, S Ajh{x )  increases, for any fixed value of x, 

and as x  increases, increases, for any fixed value of /. This is exactly what was expected to

be seen. Moreover, from the Theorem we have that for small arguments of x, SHjI((x) = 

y j-(l  + l) + o(l), for all /+1<0 This is again in agreement with Figure 2, i.e., S ^ x )  =2+o(l) and 

S ^ ( x )  = l + o(l), for /=-5 and /=-2, respectively. Also from Figure 2, we observe that, for /+l £ 0, 

S.i*{x) s,arts from the origin, and for t>0 , the linear pattern, for small arguments of x, seems to be 

in order. We know that this is what the Theorem in part II illustrates. Finally, the contour of 

S Aa i ( x )  answers some of the monotonicity issues we brought up in this Section.

S **(x) 2

1

C

Figure 1: S Aj„ (x),far  - 5 ^ / S l O  and 0 £ x £  10.
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2 4 6 8 10

Figure 2: S ^ ^ ( x j . f o r  0 £ x <. 10 and / = -5, -  2, -  I, - i ,  0, I, 3.2, 5, 8 , and 10.

0 2 4 6 8 10

Figure 3: Contour plot o f SAjn(x ) , fo r  0 <, x £ 10 and -  5 <, I <, 5.

4.6 Concluding Remarks

In this chapter, we provide an exact expression for the conditional variance-covariance matrix. Some 

results from the special functions enabled us to obtain a simple expression and derive a method of 

approximating the conditional standard deviation at both small and large arguments. The expression, 

as well as the approximations, are presented in computable form. We have provided various plots
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for the non-constant term at selected combinations of the parameters involved. We hope that this 

theory will answer various questions related to heteroscedastic examples which occur in regression 

theory and will play a key role in the diagnostic analysis.
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CHAPTER 5

ERROR BOUNDS FOR ASYMPTOTIC EXPANSION OF THE CONDI­
TIONAL VARIANCE OF THE SCALE MIXTURES OF THE 

MULTIVARIATE NORMAL DISTRIBUTION

5.1 In troduction .

The problem of approximating the scale mixtures of normal distributions has received a lot of inter­

est the last decades. Keilson and Steutel (1974) established moment measures of the distance of 

mixtures from its parent distribution, and showed that the Pearson’s coefficient of kurtosis plays an 

important role as a metric. Heyde (1975) and Heyde and Leslie (1976) studied the same properties in 

a greater detail and related the moment measures of distance to more familiar uniform measures. 

Using a more unified approach. Hall (1979) sharpened Heyde and Leslie's result by reducing a uni­

versal constant value. Shimizu (1987, 1995) generalized these results by providing Hermite-type of 

expansion of these mixtures. In the same framework Fujikoshi and Shimizu (1989) obtained a Her­

mite-type expansion of multivariate mixture distribution when the scale is distributed in a neighbor­

hood of one in some sense.

This chapter considers the expansion of the conditional variance forms of scale mixture of nor­

mal distributions in the same framework as Shimizu (1987). In particular, if X e R " , / i  > 2 is a

(non-degenerate) random vector expressed by the stochastic representation X =  A 12 G , where A is a 

positive random variable independent of the n-dimensional Gaussian random (column) vector G with 

mean 0 and positive definite covariance matrix I ,  and the equality is in distribution. In Chapter 3 we

have shown that Cov(X2 |X, = x , ) =  e[ a \X x = x, JS2|, , where S 2)1 = I 22 -  S 2i ^ u ^ i 2 v v l t *1 x i an(*
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G ,are m-dimensional (m<n) and I , ,  is m x m -dimensional, i.e., I n is the covariance matrix of 

G , , etc. It is clear that scale mixtures of normal distributions do not have degenerate conditional 

variances, as in the normal theory, thus, they provide heteroscedastic examples. Cambanis et al. 

(1997) and Fotopoulos and He (1997) have studied various properties of this conditional variance 

and obtained several expressions with respect to the moments and/or Laplace transform o f A. In this

study we investigate the possibility of expanding £[/J|X, = x, ] in terms of the moments of A and the 

confluent hypergeometric functions. The expressions are both manageable and in computable form.

Throughout this work, we use vector notation, and x a  1 = min(l,.t) and x v  1 = max(l,x). The 

organization o f this chapter is as follows. The actual expression of the conditional expectation is 

introduced in Section S.2. The main results are stated and various comments are suggested. The 

proofs of the theorems are deferred in Section 5.3. Section S.4 provides an overview of Laguerre and 

Hermite polynomials which are connected with the main results. The auxiliary results are displayed 

in Section 5.5.

5.2 Background and Results

5 .2 .1  USING L a p la c e  EXPRESSIONS: In Chapter 3 we have shown that if the Laplace transform 

of the scale random variable A satisfies

then for m=\
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and for m> 1

£T[ |̂X, = x,] =
f [ / l  cos( % ) d t

cos(% )<*

£ p | X , = x , ]
£  f V 'V '  * J .

(5.2.2)

(5.2.3)

Evaluating (5.2.2) and/or (5.2.3) can be very difficult. Thus, it is proposed to provide an ap­

proximation expression in place of (5.2.2) and (5.2.3), which will, of course, be both manageable and 

in a computable form.

It is clear that f ( A )  = e~' l> has absolutely continuous derivatives of any order on any finite 

segment [a,6 ] c  (0,®). Based on this information and the assumption that is close to one, 

(clarification of the closeness to one will be displayed in Theorems 5.3 and 5.4), in some sense, the 

conditional £[^ |X , =x,J  is approximated as follows.

THEOREM 5.1 I f  m> I and i f  the Laplace transform o f the scale random variable A satisfies (5.2.1)

and E

order.

t e A l ) " I ^ T v  1 - 1
< ® for some k  e  N , then the following expansion is in

£ p |X ,  = =-

exp
( h i  \  * r-i _ **11

« m J
M

f  , ,1 '
r f . / i - . K -,1 

2 • 2 £(.<| 
\  1 1

)+  elk (||x, 1 £(/!))

(  l1 ^ . 1

x * -:C 7 >

/
M

V

1 r \  
/ m . £i I
J ' 2 ’ 2 £fTf

1 V

where
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THEOREM 5.2  I f  m=l and i f  the Laplace transform o f the scale random variable A satisfies (5.2.1)

and E t e Al) W
-ki *

v l - 1 < ao for some k e N , then the following expansion is in order.

: [ 4 r ,  = * ,|
exp (-

exp( _  *> ) y k - i  H
\  ,,V n 2j

U ( 24 * j '
+ £i

where

Remark, (i). Note that if becomes close to one, then E

v i - fo r  i=l or 2.

* "

R A') * v l - ' ( * » > ! )

becomes small as k  s N  increases, thus, we may approximate the conditional expectation of the 

scalar at a given Xy by

£[J |X , = X. =

M ■ 
i

o 
— > + /  

j  >
E M

(  , ,1 'v 
• m i",1» m ■ ii

Jj 2 ’ ieU\
\  1 V

y k - 1

L * ! - Q
' ? + /  
V j

E
) " I

(5.2.4)
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Similarly, under the same conditions as above, i.e. is close to one but now we consider the

bivariate case (n= 2  and m= 1 ), the £ £f ? Al v l - 1 , for the same reasons as above, be­

comes close to zero as k  increases, hence the conditional expectation is now approximated by

£ [ 4 r , = i , ]  =
I !

* - l

0

f  \

"  l ' 2 ' H 2 ,
*1

( —-iVLU  0  J
Z.7 .O ' j >2'

(5.2.5)

2J
U ( 2 *M p )

Both (5.2.4) and (5.2.5) are in a computable form, and the accuracy as shown in these two formulas 

depends on how large a manageable k e N  is considered.

(ii). Observe that M
\  J J

* i , - i
—  i m • M

J '  2 ’ 2£[.!i]
V 1 ‘ /

f  + J

V j  J

* t , - i  — / • “n
J ' i ’T tpy

-i f  \ ij >i»,1,-1
, and

j  +  f  -

j - i  ) /!
(see e.g. Rainville p. 203, I960), where , Fx is the confluent hy-

pergeometric function and is the Laguerre’s polynomial, thus (5.2.4) can be written in the

form

E\A\Xl = x l \ =
I S *

, ( r l)
l j

l-iir,'

l !_EK

U ' l) \
/(!-> )Lj

'i I1 "\I-1 .-1
(5.2.6)

for some f s N .

Based on the knowledge presented in Section 5.4., it is now grasped in what respect the quantity 

needs to be closed to one. Furthermore, with the background developed in the same section we
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alternatively furnish a new representation formula for the conditional expectation of A given 

X, = I, for both m > 2 and in Theorem 5.4 for m= 1.

THEOREM 5 .3  I f  m> I and i f  the Laplace transform o f the scale random variable A satisfies (5.2.1),

and i f  the sequences {an } ” 0 = j f  -  l )  j  and {an}” Q = j f  -  l ) satisfy
f l* 0

Aq = maxi 0 , - l imsup„_M(2 >/n) ' max{ logjan |, logja

then

44*. =*,]=■
I V . ■ i i v ) '

i* 
~ f  \ j*

f  | l l l ' - f 1'

I V U v ) ' . i
\

on every compact subset A(A0) o f

THEOREM 5 .4  I f  m=l and if  the Laplace transform o f the scale random variable A satisfies (5.2.1),

and i f  the sequences \an = < E ( i n ) - 1)  |  ^ K > r . o = - ■ )
Jj rt= 0  *• L

satisfy
n - 0

t 0 = maxjo, -  limsup„_„(2 n + l ) 'M m axjlog j(^)' a„ , log(:%)‘ a„ j < c o ,

then

44*,-*,]-
L  < * - ■ ) '  

2 - y . O  j  j *

/ L j .  o  j<
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on every compact subset S ( r0) o f-----^— r  •

Remark. In view of Proposition 2, the moments E for any

j  e N  are then uniquely determined by the expansions presented in the numerator and the denomi­

nator, respectively, o f both Theorems 5.3 and 5.4.

5.2.2 U s in g  M o m e n ts  EXPRESSION: Cambanis et al. (1997) have also shown that if m> 2 , or if

m = 1 and E ^ A j < oo , then

(5.2.7)

We again here are concerned with an asymptotic expansion of this conditional expectation, under 

the assumption that the unconditional moments of the scale variable exist.. The proposed result is 

then formulated as follows

”

[ > 4 '
2~A

“ / f  k  'I2  ̂

2 A
£[/*|X, = x, ] = £ A 1 exp A A exp

\  J / . \  V

THEOREM 5 .5  I f  m>l, or if  m = 1 and / I j  < o o ,  and if  the scale random variable A satisfies 

v ') \ A - E [ A ] k < o o  fo r some k e  N ,  then the following ratio expansion is in order,
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£ p |X ,  =x, | =

Ln
l + H i ]

-!♦ ' E

k ! ( l* . l lr i-£ I '4l)e [a P " 2
V / j \

•II

4

»

1 +
/  i >
[H i,- /

2
V

-!*» £  

2 * j . i
j ' -

-

where,

•»,.m  -  z s ( y ;  'J<- t '«  • * « * ♦

r (5 + /) >»6 R  and

I / l2" ( ^ v  £[.-!])

(^A 4*1)1-1

r - l

\A  - £ [ / ! ] *

for i=Ior 2.

In obtaining Theorem 5.5, we introduce the polynomials Ljj{y ) ,  y  e R + . These polynomials

are Laguarre-type. However, if the discussed polynomial is expressed with respect to Laguarre 

polynomial (L.P.) then it will be noticed that the corresponding L.P. has an upper index depending 

on the lower one. It is well known that for the L.P. we insist that the upper index to be independent 

to the lower one, because many properties which are valid for the independent case fail to be valid 

for the dependent one.

Note that for sufficiently large f c e N  the conditional expectation presented in Theorem 5.5, 

when the scale variable is concentrated to its expected value, may be simplified in the same way as 

for Theorems 5.1 and 5.2.

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

5.3 Proofs

Proof o f Theorem 5.1. By the Taylor expansion formula, for any A>0, we have that if A is fixed, then

L j. o\ V /!2v k n kj \ V

= Gk (t,A) + b k (t,A), for 9 e(0, l) (5.3.1)

In view of the Fubini's theorem of successive integration. Lemma 5.3, and the fact that 

Xf(a,b,z) = e: \ t ( b - a ,b , - : )  (see e.g., Abramowitz and Stegun 1970, eq. 13.1.27), it follows that for 

6 e ( 0 , 1),

E[A\-
XI

M i- '• " r  * I— M I — * I’M
: + J' i ’ 2TmT

l)
xt

Similarly, for 0e(O, l),

(5.3.2)

E [ A f

x E 1

/  \ *

M
(  I. ! 1 "\

L *. 1 l*M

j M s f r r 1)} , i + ^ R " ' L
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. . . z r J  
2 2 11*11 j

11 '^ U J lW 12
E[A] -■* III Us, (5.3.3)

Thus, the denominator of (5.2.3) can be easily revealed. Using the same arguments for the numera­

tor expression (5.2.3) is now in order.

To establish the usefulness and powerfulness of Theorem 5.1, we need to understand the negligi­

bility of the quantity s,k (•,•), for z-1, 2. First the following two results are required:

j - A 2 't 7 ,Y ' (5.3.4)

(see, e.g., Gradshteyn and Ryzhik, 1980, eq.9.211.3) and

J v{:)<,— ----- — , for v > - \ .
v ’ r ( v + l )

(5.3.5)

Combining (5.3.4) and (5.3.5), it follows that for Im(r) = 0 and z>0

IM ( - j = A  £ - J — . (5.3.6)
1 v * r(™'■ + j )  w  }o r (*  + j )

Thus, substituting z with ^  ^  in (5.3.6), then the two error terms in (5.2.3) can be

bounded as follows

’f  + k '
I k .

2 *

i +
_A_ _ _
E[.<\

1 +
^ ' ' 1

(5.3.7)

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

and

W i l l s , - - ’ T[7

' *  + k) 
' k  ,

2 T r ( y + »)£[,<]? F

r (7 + * ) W S

«iV
1 +

i i V 1)

(5.3.8)

Note that for 9 e(Q, l)

l + < U y ) 2
f°r j p i s l

1 for £(1T1 >1-
(5.3.9)

Elaborating (5.3.9) the proof of Theorem 5.1 is completed.

Proof o f Theorem 5.2 From (5.3.1) and eq. 3.952.9 in Gradshteyn and Ryzhik (1980), it follows that 

for m= 1

( A - E \ A ^
/„■ £ [o ,(» . o ' — i  J»v ' ’ 1 ■

yf/r ^-'*-1

dt

( t f r f
( 2 4 4 j \ 2 J

f  \
*\___ (5.3.10)

where //,(■) is the Hermite polynomial. 

Similarly, it can be seen that

f0” £ K M ] cosf e 'H '  =
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Since C  v ke~p*'2 dt = — — r  1 ^ , then can be easily bounded as follows
Jo 2k"k \ (2p )k \ P  W

■/5r 1

>> 2 *
2/t'

. £  )

1
1 + iiV)

(5.3.12)

Finally, combining relation (5.3.9) the proof of Theorem 2 is now completed.

Proof o j Theorem 5.5. Note that if a , Pand y are continuous mappings from (0,oo) to any real subset 

and, /? and y are differentiable with respect to a  and P respectively of order k, k e  N ,  then by the 

Leibnitz’ rule for the Ar-th derivative o f product, we have that

d a  dp da  d a * v j d p k' ! d a 1
for A > 1 (3.13)

Similarly, by the Leibnitz’ rule ,it can be also seen that for n s N  and a s R +

Dy * v - - ) =

(5 .3 .1 4 )
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where D is the differential operator — .
dx

Note that (x) is a polynomial o f order I of x ~‘. However, if a=0, then

= * V ' £ ,  , ( x ) ,  for (5.3.15)

where ^=nmi n( l , £ ) ,  f e N . i . e . ,  if i> n  then L , ^ a(x) is just a polynomial of order n of x _l.

,2

Set y(a, t)  = and f3(a,t)= ̂ . Note that ® may be written either as v + | o r  v,for

v e N .  Thus, combining (5.3.14) and (5.3.15), the following result is in order

V , ) . ( £ )  ' j f r y f e F V - ) £ • ( « - ')
/ v y v ‘ n

r r
a ' : e " ! ; j  [ *  j  lj(-

r
J ;

(5.3.16)

By Taylor’s expansion series around £[^l], it follows that for fixed A>0

A ' 1’ D ^ E [ A p e '

= £*(/!,r) + A * ( ^ , r ) (5.3.17)

where Am = + -  £[^p  and 0e(O ,l), and r=|x.

In connection with (5.3.16), we now present an explicit form of the £ ^ ( .4 , / ) ]  as follows.
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1 + !, : ( f £M ) (5 .3 .1 8 )

For the residual term, we proceed as follows. Observe that A*> A for A <, £[.4], A* > £[/l] 

f o r /!> £ [ /! ] .  Thus, £[a* (.4*,/)] can be bounded as

4 A* ( ^ - ') ]

v 2 y

-".♦I

Z*-l
j u Q

' k  -  r
v j  J

' k - p
\  r )

( ^ 4 - f
( A ,  £ [ , ] ) • "

A - E [ A ) ‘ (5.3.19)

This completes the proof of Theorem 5.5.

5.4 Laguerre and Hermite polynomials and series

At this Section we borrow a few standard ideas and definitions from the theory of the classical or­

thogonal polynomials in order to make our results more revealing and easy to be extrapolated. As a 

standard reference book it is considered the Rusev (1984).

D e f i n i t i o n s .  It is known that every system of orthogonal polynomials |  (-)} * 0 is linearly inde­

pendent. In particular, for every integer v>0,  *s basis in the space of all polynomials

with degree not greater than v. This property together with the orthogonality leads to the important 

statement that every system of orthogonal polynomials is the solution of a linear recurrence equation 

of the kind

<*ny n+\ + { 2 - P n ) y n + Y„yn-\ = o  (5 .4 .i)
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where a n, and y„ *■ 0  for n e N  -  {0 }.

In other words, for every z e C  and n e N  -  {0}, it is required that

a„ Pn+l{z) + ( ,  -  fin)Pn{z) + y H (r) = 0 (5.4.2)

Now, if a n =n+  1, /?„ =2n + a  + 1, y n =n + a,  and a e R - j - 1 ,  -2, •••}, then Pn(z)= L ^ \ z ) ,  

i.e., they are the Laguerre polynomials.

Let Qbe a system of polynomials orthogonal in the interval [a, A] with respect to the

weight function w() . This system is a solution of the recurrence equation of the kind(4.1). How­

ever, it can be shown that the system of functions

g , ( * )  = - f b » 6 N ,  (5.4.3)' I —

holomorphic in the open set C -[a, 6 ], is also a solution of (5.4.1). The functions £?„(-), n e N . a r e  

called functions of second kind. In fact, it can be shown that the system {{?„(r)}*o is a second so­

lution of the equation (5.4.10) in the open set C-[a,A>], i.e., V z e C - [ a , i ]  the systems {/>„ ( r ) |” o

and {fi<(r )} J 0 are linearly independent.

Therefore, the Laguerre functions o f second kind are given by

l a ) /  X r a>t “  e x p ( - f ) 4 , “ *(f)
M n ( - )  =  - / „ ------------------ — d t ,  n  e N ,  ( 5 .4 .4 )

where a  > - I ,and :e C - [a ,A ] .
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ASYMPTOTIC F o rm u la s . If a e R -{- I, -2 , • • •}, the asymptotic behavior o f the Laguerre poly-

which is valid uniformly on every interval [0 ,ro], 0<(o<°o, provided that a  * {- I, - 2 , • • •} and 

real.

In view of the rate of convergence, we shall present the asymptotic behavior of Laguerre poly­

nomials if n and z (independently) tend to infinity.

First, we define the following. If 0<A<oo,  p(k)  denotes the image of the straight line

Im(o;) = yl under the transformation z = a)2. This means that p(k)  is the curve that can be de­

scribed by the equality R e(-z)^  = k  , i.e., it is the parabola with focus at the origin and having the 

real as its axis. Let A(/l): = interior^ p(k): Re(- z f 1 = / l | . If 0<A<oo,  p=  maxjl, 2A2 j and

a e R - { - 1 ,  -2 , •••}, then 3aconstant A -  A{k ,p ,a )  : V n e N  -{0} and z = x + i y e  

A‘ (k,p): = A(/l)n{z eC.-|z| >/?} holds, we have the inequality

nomials j 4 ,a'(-)} on the ray (0,®) is given by Fejer’s formulas

where f*“*(•*) = &(n '  tj j on x e(e,a)), 0<£<co<  oo, for sufficiently large n.

If we are interested only in the growth of 4,°*(x) 2 5  3  function of n, we can use the following

formula

(5.4.6)

(5.4.7)
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C o n v e r g e n c e  O f  S e r i e s  In  L a g u e r r e  P o l y n o m i a l s .  It will be seen that with series in Laguerre 

polynomials

* e R - { - l ,  - 2 , (5.4.8)

we have to be careful because their regions o f convergence are unbounded and this causes some dif­

ficulties. For example, by using only the asymptotic formulas (5.4.5) and (5.4.6) on can not prove a 

statement like Abel’s Lemma for power series.

As before, if 0 < A < °o, by A(A) = interior^ p(A): Re(- r) 1 = A j and by A* (A ) , its exterior. By 

definition A(O): = 0  and A(co): = C , respectively A’ (0): = C -  [0,co) and A*(oo): = 0 .  Further, if 

p>  maxjl, 2A2  j , we define A(A,p):= A(A)f]{- <=C.jr| < p j

PROPOSITION 5.1. If A0  = max|o, -  l i m s u p ^ ^ ^V n j  log|a„|l, then the (5.4.8) is absolutely uni­

formly convergent on every compact subset o f A(A0)and divergent in A*(A0).

To see the absolutely convergence of (5.4.8), inequality (5.4.7) is utilized, namely if a  e R -

{-1, -2, •••} and -  l im s u p ^ ^ V n )  log|a„| > A0, then, VA e(O.A0) a n d p >  maxjl, 2A2 j, the

series

(5.4.9)

is absolutely uniformly convergent on the region A*(A,p). Indeed, if 0<  r<  A0  -  A, then [a„| = 

o |e x p (-( 2 A + and (5.4.7) gives that anz :*‘ exp(-z)l|,a*(r)J = o ( n r * e x p |- 2 A>/rt^ , i.e.,

the series (5.4.9) is majorized in A*(A,p) by
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n * * exp^- rVn j < oo. (5.4.1 0 )

Un iqueness  O f Th e  Ex pa n sio n s . A well known fact is that the orthogonal polynomials expan­

sions have the property (usually called uniqueness) that if an^n(z) = tfien a„ = 0 Vn e N .  

In other words, the coefficients of an orthogonal expansion are uniquely determined by its sum. For 

example, in the case o f a system of orthogonal {^ ,(-)| Jm0 polynomials on a finite interval [a,A] with

respect to weight >v(-) the coefficients of a series of the kind f { z )  = Y2-oa»^'X: ) are 8 ‘ven by the 

equality

an ~ ~ ~  Vn e N , and A„ = J*w(r)[/>„(/)]*<*, (5.4.11)

provided that f { z ) is uniformly convergent in \a,b\.

In the case o f Laguerre polynomials j4 ,a *(r)j (a > -l)  the interval is infinite and we must be

careful when applying representation (5.4.11). Rusev (1984) have shown that 

Proposition 5.2. Let 0<2.  <® an d a> -l. If the complex function /(•)  has a representation

/ M - Z L . o . t f ’M .

then /(•)  is holomorphic in d(/^) and Vn e N  holds the equality

a" = ^ - J o * ,B e x P ( - / ) ^ 8)( 0 / ( , >** Vw e N -and l [ ° ] = ^ 7 ^ -

In particular, if f { z )  = 0, then a „ s  0 Vn e N .
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Hermite Polynomials. It can be seen (see e.g., Rusev, 1984) that

and = "  e N .  (5.4.12)

Thus, the statements presented for Laguerre polynomials could be also be referred to Hermite poly­

nomials. For the sake of convenience, we shall illustrate the following.

We define that ^ ( r ) ^  j? €C.jlm(z)| < r | . By definition 5(O):=0 and S ^ c o ^ C . Similarly,

S'(r):= j ;  eC.jfm(r)| > r | , if 0 <r<ao and S ’ (0): = C  - ( -  oo, oo), and S'(cc): = 0 .  Then, the fol­

lowing Abel's Lemma is in order.

P roposition  5.3. a. I f  r0 := m ax |o , -  limsupn_ .)(2n + I ) '1’ logj(-%); a„ j ,  then the series 

is absolutely uniformly convergent on every compact subset o f S(r0)and diverges in

S ’( t0). And

b. I f  a complex function /(•) has in the strip S (r0) (0 < r0 <, »  )a representation by a series o f Her­

mite polynomials, i.e., f { z )  = anH„{z), then /(•) is holomorphic in S(r0)and  Vn e N

a* and 7» = ^ 2 n/i!.
*n

In particular, i f  f ( z )  = Q,then an = 0 Vn e N .
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CHAPTER 6

ASYMPTOTIC PROPERTIES OF SAMPLE MOMENTS AND SOME 
UNIT ROOT TEST STATISTICS FOR AN AR(1) PROCESS 

WITH INFINITE-VARIANCE INNOVATIONS

6.1. Introduction

Many time series data in finance and economics often exhibits non-stationary behavior due to unit 

roots. In practice, such non-stationary series can be converted to a stationary one by taking appropri­

ate differencing. The appropriateness of differencing hence depends on the detection of the presence 

of unit roots. Since Fuller (1976) and Dickey and Fuller (1979, 1981), a number of methods for de­

tecting unit root have been proposed for various data generating mechanisms, and the asymptotic 

behaviors o f test statistics have been thoroughly studied (see, Evans and Salvin, 1981, 1984, Bhar- 

gava, 1986, Solo,1984, Said and Dickey, 1985, Phillips, 1987a, 1987b, Phillips and Perron, 1988, and 

many others). All the above results are obtained under a condition that the innovations are either iid

(0, c r  ) or allowed to have certain degree of dependency. The existence o f the second moment is a 

crucial underlying assumption for results obtained by the above authors. In such case, the innova­

tions are in the domain of attraction o f a centered Gaussian law, hence weak invariance principle ap­

plies to the partial sums according to the functional limit theorem and the limiting distributions can 

be derived in terms of Wiener process.

In recent years, however, more attention has been given to the possibility that certain phenomena 

(e.g., stock return data, exchange rate, insurance claims) can be better modeled by distributions with 

heavier tails than normal distribution. Empirical evidence of heavier tails for the speculative data 

has been well documented (see, Fama, 1965, Mandelbrot, 1967, and DuMouchel, 1983, etc.). Such
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observation naturally leads to the consideration of distributions with infinite variance. Moreover, 

many time series in finance and economics appear to exhibit “discontinuities” (i.e., large jumps) and, 

thus may be more adequately modeled by time series models whose increments have infinite vari­

ance. Perhaps for this reason, recently there has been an increasing interest in modeling financial 

and economic data with stable process of exponent a , 0 < a  < 2 . Like normal distribution for finite- 

variance case, a  -stable distribution is used to model the marginal distribution of infinite-variance 

data, and the a  -stable process and the Levy motion in finite-variance case are the analogs to Gaus­

sian process and Brownian motion in finite case. The major difference is that for the a -stable proc­

ess, the sample paths are no longer continuous, if a  e(0, 2). Resnick and Greenwood (1979) and 

Resnick (1986) established the weak invariance principle for appropriate normalized partial sums of 

a sequence of iid random variables from the domain of attraction of a stable law and the sequence of 

squared r.v.'s . Based on this result, Chan and Tran (1989) obtained the limiting distributions of the 

OLS unit root test statistics for an AR model with noises belonging to the domain of attraction of an 

a  -stable law with a e ( 0 ,  2). Within the same framework, Chan (1990, 1993) obtained the as­

ymptotic results for near-integrated time series, and for the MA unit root test statistics for a non- 

invertible moving average process. Philips (1990) extended the results of Chan and Tran (1989) to 

allow some moderate degree of dependence and heterogeneity for innovations. Caner (1997) gener­

alized the univariate results to vector autoregressive process. Using Whittle estimator, Mikosch et 

al. (1995) estimated the AR and MA coefficients in an ARMA process with heavier tailed innovations. 

Knight (1991) derived the limiting distributions of Af-estimates of AR coefficients for an integrated 

linear process with infinite-variance innovations, and showed that A/-estimates have faster rate of 

convergence than the LSE and their asymptotic distributions are conditionally normal or mixed nor­

mal, so Wald tests and t-ratios can be constructed. Some other related papers include those by Davis
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and Resnick (1985a, 1985b, 1986) and Avran and Taqqu (1992), where the limiting theory for sam­

ple correlation functions was derived.

Our first goal in this chapter is to develop the asymptotic distribution theory for the unit root test 

statistics based on the Lagrange Multiplier (LM) principle for an integrated autoregressive process 

with innovations in the domain of attraction of an a  -stable law where a  e (0, 2). The LM  unit root 

test for finite-variance case was proposed by Schmidt and Phillips (1992) in an attempt of circum­

venting the difficulty that the distributions of conventional DF tests under the null hypothesis are 

dependent of the nuisance parameters. In order to construct the efficient scores and Hanssenian ma­

trix, one needs to know the explicit form o f the likelihood function. Unfortunately, the functional 

form of density for stable random variable is unknown except for a few cases. So we adopt the LM  

statistic given in Schmidt and Phillips (1992) and assume innovations are heavy-tailed, then derive 

the limit distribution of LM  statistic for the infinite variance case. Our second goal is set to derive 

the asymptotic properties of unit root test statistics based on generalized Durbin-Watson (DIF) sta­

tistics for an AR process with heavier-tailed innovations. Since Dickey and Fuller (1981) suggested 

the use of the DW statistics for the tests of unit root, some work has been done for the DIF-type unit 

root tests for the fmite-variance case. Sargan and Bhargava (1983) and Bhargava (1986) provided 

methods using OLS residuals in a regression model with drift and time trend and in differenced 

equation to obtain the DIF-type test statistics. The exact finite distributions and powers of DIF-type 

statistics were also computed using Imhof (1961) routine. Nabeya and Tanaka (1990) suggested a 

method for the accurate computation of the limiting power under a sequence of local alternatives in 

the regular AR unit root tests. The advantages of the DIF-type statistics against the DF-type statistics 

for testing the unit root tests may be that the former is easier to calculate the exact finite and limiting 

distributions, and can be readily extended to the general models and a wide class of tests. In addi­

tion, the DIF-type tests display better power properties in finite samples, especially when the model
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includes an intercept and/or a linear time trend, in this chapter, we would like to extend the DW-type 

test for unit roots to the infinite-variance case, the limiting properties of DW statistics are provided in 

this chapter. Observing that the parametric unit root tests are too restrictive in many cases, the rank 

counterpart of Dicky-Fuller unit root test was proposed in Breitung and Gourieroux (1997). Ranked 

tests are invariant with respect to monotonic transformation and robust against a wide class o f out­

lying observations, and they are expected to perform better than parametric tests. Breitung and 

Gourieroux (1997) considered asymptotic behaviors of rank test when the innovations are strong 

white noise series symmetrically distributed around zero. In this chapter, we will extend the results 

obtained in Breitung and Gourieroux (1997) to the case when the innovations are in the domain of 

attraction of a symmetric stable law. In an influential paper, Granger and Newbold (1974) examined 

the likely empirical consequences of nonsense or spurious regressions in econometrics. They argued 

that the levels of many economic time series are non-stationary and their sample paths are well rep­

resented by integrated or near integrated process, and regression equations which relate such time 

series are often misleading. Phillips (1986) provided an analytical study of regressions involving the 

levels of economic time series. In his paper, an asymptotic theory was developed for the regression 

coefficients and for conventional significance tests when regress y, on x, while y, and.t, are two 

independent random walks with finite variances. In this chapter, we would like to examine the phe­

nomenon of the spurious regression when y, and x, are two independent random walks with infinite 

variances. Large sample asymptotics for regression diagnostic statistics are studied for the case of 

spurious regression involving two independent random walks with infinite variances.

Chapter 6 is organized as follows. Section 6.2 provides some preliminaries related to Levy proc­

ess and limit distributions, expressed as stochastic integrals of Levy motions, of sample moments 

from 2lA R (\) model with the innovations belonging to the domain of attraction of a symmetric stable 

law. The exact densities of these integrals are further studied in this section. Section 6.3 deals with
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the asymptotic theory for the ZAf-type statistics. In Section 6.4, we consider the limiting theory for 

DW-type statistics. In Section 6.5, we derive the asymptotic theory for the ranked unit root tests 

when the innovations have heavy tails. Section 6.6 discusses the asymptotic behaviors of diagnostic 

statistics for a spurious regression in the infinite variance case. Finally, some concluding remarks 

are provided in Section 6.7.

6.2 Preliminaries

The most common and convenient way to introduce a  -stable random variable is to define its the 

characteristic function (c./). A random variable X  is said to follow the stable distribution if its char­

acteristic function is of the form

where a  e(0, 2] is the characteristic exponent characterizing the thickness of tails, <r>0 is the 

scale parameter, p  e [ - 1, l] measures skewness of the distribution, and p  e ( -  oo, ao) is the location 

parameter. A stable distribution with parameters a,<T,P and/i is denoted by Sa(cr,p,/j). A'is a 

symmetric a stable ( SaS  )random variable if and only if/7 = // = 0 , and is denoted by X -  Sa (o’,0,0).

where

co{t, a , p )  =
/?|/|a' ‘ tan(/ra/2), if a *  I, 

-  B — Inl/L i f a  = l.
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Let {X n} be a sequence of iid random variables with the common distribution F. The distribu­

tion F is said to belong to the domain of attraction of a SceS law if there is a sequence of positive 

constant {a„} such that

=> X  ~ SaS, as n -> °o .

It is known that the necessary and sufficient condition for F to be in the domain of attraction of a

stable law is that there is a slowly varying function l(x) such that

\ -  F(x) ~ px~al(x), as x -> oo,

where

p = I '1"  ^(•r )]/[1 "  F(x ) + F (~ -r)] •

Note that when F belongs to the domain of attraction of a symmetric stable law, we have p = 1/2 .

It is shown (LePage, et al., 1 9 97 ) that the scaling factor an is chosen as

a„ = infjx: / ,(|A'| > x ) 5 / i ‘ ' | , (6.2.1)

and must satisfy lim > a nx) = x '“ . In general, a„ = n lalQ(n), where /„(•) is a function

slowly varying at infinity. Throughout this paper, an is a sequence of positive number defined as

(6.2.1).

A process {^(r), r > 0 | is said to be a stable process if its finite dimension distribution is jointly

stable. A stable process j La (/), t  > Oj is said to be an a stable Levy motion if 

(1 ) . Z.a (0 )  =  0  a.s.,
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(2). {La (t), t > oj has independent stationary increments, and

(3). La( t ) ~ S a(crt'a oj for any fixed t ( />  0).

If P  = 0, (£ a (f), t>  Oj is called a SaS Levy motion; if a  = 1, it is called a standard Levy mo­

tion; and if both P  = 0 and a  = 1, it is called the standard SaS Levy motion. Note that for a stan­

dard SaS Levy motion, La{t) = t Xa La{\), and for a = 2, L2(t) = where W(t) is the stan­

dard Brownian motion since ^(cr.O.Ojs Ar(o,2<r2j .  The following lemma states the LePage series 

representation of a standard Levy motion, and plays an important role in our analysis.

Lemma 6.1 A standard SaS Levy process La(t) can represented as

where jS ,} is a sequence o f iid Radamacher variables satisfying P(S, = I) = P{S, = -  1)= 1/2. 

[U, } is a sequence o f  iid uniform random variable over [0, l] , and {T,} is a sequence o f arrival 

times o f a unity rate Poisson process, and these three sequences are mutually independent. The con­

stant Ca is a constant defined by

This series representation allows some intuitive interpretation for the standard SaS Levy mo­

tion. In fact, a standard SaS Levy motion is a pure jump process, the instants U,' s of the jumps are 

uniformly distributed over [0,l]. It jumps up and down with equal probability. The height of each

, i f a * l ,

if a  = 1.
(6 .2 .2 )
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jump is distributed as the -  1/a power of arrival times of a Poisson process with unity arrival rate. 

The following lemma can be found in Samorodnitsky and Taqqu (1994).

Lemma 6.2. A random variable X  ~ Sa(c~ia , l,ojfor 0 < a  < 1 has the following series represen­

tation

x  =j | ] r ; la ,
/-i

where {I",} is the same as in Lemma 6 .1.

The weak invariance principle of iid random variables from the domain of attraction of stable 

law is well known. Recently, LePage, et al. (1997) established strong invariance principle for iid 

random variables from the domain of attraction of stable law (not necessary symmetric). This result 

is sated as the following lemma

Lemma 6.3 Let {X, J be a sequence o f  iid random variables from the domain o f  attraction o f a 

Sa(<r,0,0) law with 0 < a  < 2 , then, as n-+°o, we have

(i). —  X X, -*<rf]<5;ryl a , a.s.,

where {£,}, {t/,} and [T,} are defined in Lemma 6.1.

Note that the convergence is defined on the functional space £>[0,l], the set of cadlag functions, 

with Skorohod metric p D defined as
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for all x ,y  e £>[0,l], where A is the set of all continuous increasing real functions A(f) on [0,1] 

such that A(0) = 0 and A(l)= 1 (see, Gikhman and Skorokhod, 1969).

Lemma 6.4 (Resnick, 1986) Let [X , } be a sequence o f iid random variables from the domain o f 

attraction o f a Sa (<r,0,0) law with 0 < a  < 2. then, as n-+<x>

\  /-i i-i

where ((/(r), ^(/)) is a Levy process in Z)j0,l]‘ .

Remark. Lemma 6.4, together with the continuous mapping theorem, is used frequently in the lit­

erature to derive the asymptotic properties of test statistics of unit roots. It is worthwhile to get a 

better understanding of U{t) and V{t). Under the assumption that X , ’s belong to the domain of 

attraction of a symmetric stable law, we can see that, by Lemma 6.1 and Lemma 6.3(ii),

(/(/) s  orC~'a La( t ) ~ S a{oC~' at ' a , 0, 0),

and

u( 1) = <xc;laLu(i)~ac;x as a(i, o, o) oc;1 aA'2z,

where A =d cos(;ra/4) ' a Sa 2(1,1,0) and Z~./V(0,l). And the process {^(/), f^O j is an a /2  to­

tally skewed Levy motion. In particular, a«2£ " . , X? -» K(l), a.s.. This variable appears frequently 

in the asymptotics of unit root test statistics. It is known that (Chan and Tran, 1989) F(l) is non-
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degenerate random variable for 0 < a  < 2 , and F (l) = 1 for a  = 2 . The distribution of f '(l) when

0 < a  < 2 remains unknown in general. Using Lemma 6.2 and Lemma 6.3(iii), we can see that P'(l)

- a 1 Ca\ aSa 2(1,1,0), where Ca 2 is defined in (6.2.2), and Sa 2(1,1,0) is a positive totally skewed

to the right a /2  -stable random variable.

The asymptotic results in Lemma 6.3 and Lemma 6.4 can be extended to the linear process case.

Let {A-,} be a linear process satisfying X , = Y?,.qcj£i-j where {£■,} is a sequence of iid random 

variables from the domain of attraction o f a SaS  law. Under the condition of Y * A c . f  < «  for
L * j >0' J '

0 < S < min(a.l) and Davis and Resnick (1985) showed that X,  = Y ^ ,o cj e>-j con*

verges almost surely, and

some positive £ < m in (a ,l) , Phillips (1990) showed that a more revealed results can be obtained 

using Beveridge-Nelson decomposition to \e , }:

Set S, =Xy„i X t , <y = £ * 0cv’ anc* = S J-o cy ’ un(*er l^e condition that <0° ôr

Lemma 6.5 Let } be a linear process defined above. Under condition o f qJ\c j f  < oo fo r  

some positive 5  < m in(a,l), we have
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and the joint convergence also holds.

Remark. For the linear process case, functional limit theorems can be delicate. In general, the nor­

malized random element a~1 " 'jx , may not converge in the usual Skorohod metric, as pointed out

in Avram and Taqqu (1992).

Let {e ,} be a sequence of iid random variables in the domain of attraction of a Sa (<r,0,0) law

with a  €(0,2). Suppose that (m, ) is another sequence of iid random variables in the domain of at­

traction of a Sa (<x,0,0) law with a  €(0,2), and is independent o f {e, }. It shown in Davis and 

Resnick (1986), the product [e,u ,} is also in the domain of attraction of a 5a (cr,0,0) law. That is, 

£,u, satisfies

Pi\ e.u. |> sx) _a
/  -> x as s -> oo, V x > 0.

p U . u , i > j )

The appropriate normalization for partial sum e,u, is

a„ = inf j.r: P(|£•,w,|> x) < w '1} = /»' aT0(n),

and the normalized partial sum converges as

3*l Y ! . i eiui =>c ; 2a<T2Ya( 0 -

where ^ ( l )  is a standard SaS  Levy motion.

Phillips (1990) showed that if s, and M,are two independent random variables in the normal 

domain o f attraction of a symmetric stable law, then an = (nlogn)l a . It is shown (Davis and 

Resnick, 1986) that a„/a„ -> ® , and it is clear that an/a l  -> 0 because
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where / '(» ) = l0(n )/(l0(n)J2 is also a function slowly varying at infinity, hence n~‘ al'(n) -> 0. 

Thus we have

Lemma 6.6 Let [e, } and \u , } be two independent sequences o f iid random variables from the do­

main o f attraction o f  a symmetric stable law, then

\ e‘u< - * 0 a s '

where a„ is defined in (6.2.1).

Now consider the following autoregressive model

Y ^ p Y . + e , ,  (6.2.3)

where e, ’s are iid random variables with a common distribution F belonging to the domain of at­

traction of a Sa (<T,0,0) law with index a  e (0 ,2 ). Under H0: p=  1, model (6.2.3) can be written as

Y , = S ^ Y „

where S, andS0 = 0 . The initial value may be either a fixed constant or a random

variable whose distribution is independent of the sample size n. Without loss of generality, we may 

assume Y0 = 0. Collaborating the lemmas listed above, the following theorem is in order

Theorem 6.1 Let {Y,} be generatedfrom model (6.2.3). Under H0: p  = 1, as n->  qo, we have
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(')• ) ‘ Z  Y< =» 0 (2 a “ f 0 La (rH r ’
«l

(ii). (»„’ ) " £ ? - ,  = (< * ■ ;'“ ) ' f j i . W 2**',
/■I

(iii). («2an) ‘f ; / ^ = > o C ; ,a j ‘rZ:a ( r y r ,
/ - i

(iv). a n' 2X ^ -l^ , =>(°C'«IO)2 j 0lz;a(,'K a ( r )«

(v). (na„ )■' £  te, => aC 'J “ rdLa ( r ) ,
>•1

where j La (r)J is a SaS Levy motion on [0,l], Z,~(r) is the left limit o f La (/).

Proof Let 5jnrj = > where r  e[0,l] and [•] denotes the usual integer part. Define the stan­

dardized partial sum of e, ’s as

Vr ( \  - l e  \ a n S ' - n  fbr(/-l)/n £ r < t / n , t  = \ , 2 ,  — ,n,
* ,( '• )  = «,, $M  = _,c f .[o„ S„f for r  = l.

By Lemmas 6.1 and 6.3(ii), we have

X n(r ) ^ o C -a' a La(r), forr e[0,l] (6.2.4)

From (6.2.4) and the continuous mapping theorem, Theorem 6.1 can be established by rewriting 

those sample moments in terms of functions of X n(r ) .

(o. k  r'ii- - w i* - .  =w'i—
/ * I  / • !  f * l  & n

=inY'nt  J L x»{rYr=&xArYr/-i *

^ o C a f01M rK
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/  =  l '  '  ( - 1  ( * l ^ a n

= («) , ' I±  \ l  x n{r f  dr = f 0X n(r)2dr 
/ ■ I  *

=>(oC«l “ H d M r )2‘fr-

(Hi). First, note that t -  1 = n2 Jf", rdr -  1/2, and

n' t tY'= 'L { ‘ -  1)U - = ! ( '  -  O5 '- ' =2 X  f.I. r5H ‘/r "  ?  Z  f 5[»r|^  • Hence
i . i  ; . i  f«i / . i  * *■ f*i *

(n2 “  X  J.li ('V '-
(-1 (.1 

• I

Part (iv) was proved in Chan and Tran (1989).

For part (v), note that },; rdS[„,\ = rS[„,| -  f,:,5[n,j^r = r - S ,  -  — 5(. ,V  - S ,_,= - • £ , .  So it is
Kn n ) n n

true that te, = n J ',  rdS, > , thus the following convergence is in order

(na„Y S ^ = < ’S  J ,\rd S [nr] = j / d X ^ r
/.i /-i •

= > ° C ? a S'ordLa { r }

Thus, we complete the proof of Theorem 6.1.

The above asymptotic results are expressed as stochastic integrals of standard Levy motion. De­

spite their initially unfamiliar appearance, they are actually random variables with known densities.
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Let us restrict {e, } to be a sequence of iid Sa (1,0,0) random variables. In this case a„ 

we have

/■I lm\ /■!

= n -(W a)s
r t- l 1 ct \xla

V . / - I

, 0,0

I a

=/.-(ula) ! ( « - / ) “ s a(1,0,0).

Using Euler's summation

it is not hard to see that

/ ( l )  + / (2 )  + ... + /(n )= f" /( .t)* &  + 0(l),

n - l  n - l  , ( f t  — l V

= 1 ' ” * r , “‘* - J T 7 7 -
/ - I  e l  1 +  “

Hence

( M a ) I  (»-<)*
/ - 1 1 + a

, as « -> qo .

In view of (6.2.5) and (6.2.6), the following convergence follows

cl

^  1 V “  ^
r H  ’ ° ’ 01 + aJ

On the other hand, from part (i) of Theorem 6.1

K ,  r '  Z  ^ - 1  => C 8 fQ La {r)dr.
r-l

Thus, the right-hand sides of (6.27) and (6.28) must be equal in distribution
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i l K W r  S.
' '  I

1 + a
, 0, 0

If a  = 2 , we have

J > 2(r> /r= , S 2 ( j 173,0,0)=, MO,2/3),

which is consistent with the known result j ]0W ( r ) d r M®> 1/3) (Banerjee and Hendry, 1992) since

M ' K  yf2W(r).

Follow ing the same line of the proof in Chan and Tran (1989), we have

t  => (o c ; 1 •  F  Jo t ;  ( r )* L . W

=rf ^ - ( c ; 2a^a(l)2 - C ' 2aSa ,(1,1,0))

Note that

La{ \ y s a(\,0,0)=d A 12Z ,

where A ~ Sa : ̂ (cosra/4)* “ , 1, oj and Z -  /V(0,2), we can rewrite the above result as 

a ? i r , - , e ,  = , ( o c ; ' “ )! | i ; ( r ) r f l a (r)
f * l

y ( c ; ! " £ “ W ! - C « V , ' M ' . ' . 0 ) )

where c  = l a ' C 2 “ (c o s ^ a /4 ) 2 and d  = C~2° j\2C'al a (c o sna  4 ) 2“ j .

To derive the density of \ XrLa (r)dr, let [e, } be a sequence of iid Sa (1,0,0) random variables. 

First, note that
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*  -  n ' p ' ' L " . , ^  -  ^

^  (i.o.o).

Let « = »/(»* 1), then, (l -  = f"(l -  $ 2 | )  d, = (<t + I)"' J v (l -  e(a + «=!))'du,

J i t 1" “O' + “r i r *  - » f«(' ■ )”<*<=( '/2)s ( j  ■ 1 + a)

Thus

-  2 £ ! ) * j '"  «>(„(„ ♦ l)/2)(„ * 1)' “ [(I/2)S (|,I ♦ a)] ' *

Combining (6.2.9) and (6.2.10) we have

(" \ ) ~ ' tY, => 2 '<UI a |[5(4tl + «)]' “ 5a (l,0,0), 

and from Theorem 6.1, we know that (/i2» 1 “ j ' tY, => C " 'a J0' ^ o {r)dr , hence we have

J o ( ' >  =v 2-(ul a)[/j(j-,1 + «)f a5a (1,0,0).

If a = 2

f ‘rZ2( / >  = , >/fl(i,3 )/8 S 2(l,0,0)=rf J2/15 N{0,2) = N {0,4/15), 

which is consistent with the known result jVfF(r)t/r ~ iV(0,2/15).
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In the above table, we list asymptotic results of some sample moments and their distributions. 

The results for Gaussian case ( a  = 2 ) are also provided and served for testing the correctness of the 

distributional forms of those functionals of Levy motions. The density given in 7 of Table 6.1 is con­

ditional on Y,.{ and conditioning is valid since La(r) and Ua{r) are independent standard SaS 

Levy motions. Thus, the unconditional form may be presented by

•I a

/*i J i»i

=> o C ;1 “ [ f X  ( r ) a d r ] '  °  £  L-a ( r ) d U a (r) -  o C J1 (l,0.0>

In Model (6.2.3), the OLS estimator o f p  is given by p  = Y t Y,Y, - . / I ? ,  so the conventional
1*1 / /«l

(DF-type) unit root test statistics are presented by

n ( p - \ )  = a '1Yt Ylel J n - ' a ' ^ Y , 2 , andf = [ X ^ 2] ( P " 1) / ’
i*i / /-i '/»i

with = n’' i d(Yl - p Y , . \ ) 2 ■
i~ i

Based on the results obtained in Theorem 6.1, we can derive the limiting distributions of the 

above DF unit root test statistics for the infinite variance -•!/?( 1) process. The following theorem 

states the limiting distributions of those test statistics.

Theorem 6.2 Under H0 :p = \ in model (6.2.3), we have

(i). n (^ - l)= >  l'oL~a(r)dLa(r ) / j '0La (r)2dr,

(ii). p  -  1 -> 0 in probability,
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(Hi), n a f s 2 -+W~<j2C-a\ aSa 2 (1,1,0), a.s.,

r  ( / > • « = * )  

where W is a positive totally skewed to the right a /2  -stable random variable.

Theorem 6.2(i) is given is Chan and Tran (1989). Theorem 6.2(ii) is an immediate consequence 

of (i). (iii) can be proved using the result in Theorem6. l(ii), and (iv) can be established by the re­

sults in (i) and (iii). If the innovation series is a linear process, the limiting distributions of DF-lype 

test statistics were given in Phillips (1990).

6.3 Asymptotic Results for the L M  Statistic

One of the drawbacks of the conventional Dickey-Fuller tests and their variants for a unit root is that 

the asymptotic forms of the test statistics depend on the assumptions about nuisance parameters rep­

resenting level and trend in time series models. The meaning of the nuisance parameters under null 

hypothesis is different from that under the alternative hypothesis. To overcome this drawback, 

Schmidt and Phillips (1992) proposed to re-parameterize the first-order autoregressive process by

I - * * * ' * ' .  (63.1)X , = p X ,  + s,

where the meaning of nuisance parameters, /?0 and /?,, remain the same under both hypotheses. 

Under an assumption that s, are iid normal, Schmidt and Phillips (1992) developed score tests based 

on Lagrange multiplier principle for a unit root, that is p  = 1, and showed that the asymptotic distri­

butions of the test statistics are invariant to the nuisance parameters j30 and /?,. In this section we
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assume the e, ’s in model (6.3.1) to be iid Sa (l,0,0) instead of i idN[0,1), we want to develop the 

asymptotic distribution the LM statistic along the same line of Schmidt and Phillips (1992).

Recall that in Schmidt and Phillips (1992) the LM  statistic is constructed as

LM = V - 2 (6.3.2)

where /?, and PQX are the restricted MLE's for /?, and ftQx = /30 + X 0 subject to p=  1 respectively,

S ,.I = Y,-x -  A X -  fix ( ' -  o  - 3  = t ( i ;  -  Y,.x -  A )2 , e = i ; . ,  s, /n  , and
/ - i

t i = Y x - p ,

S>-\ = Z ( e7 -*)■

The following theorem gives the limit distribution of the Lagrange multiplier statistic in (6.3.2) 

for the infinite variance case.

Theorem 6.3 In model (6.3.1), assume that e, 's are iid Sa (1,0,0) random variables, then,

as n —>oo,

LM = . / « ?  '

* i s r . x
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where Va (r) = La (r) -  rLa (l) is the standard SaS Levy bridge, which is the solution o f the stochas-

rVa (s\ , 
tic integral equation Ka (r) = J '   ̂ dr + j rQdLa(s).

Proof. Using Lemma 6.2.3, it is not hard to see that

w' l " V i  = “ 2 ( ^ /  - ^ ) = w' l a ^ H  - ( W / nK l a 5 »i-1

=» C  » [ i . ( r )  -  r i„ (l)] = c ; ' - v , ( r ) . (6.3.3)

Moreover, using (6.3.3) we obtain that

=  ( c ; ' “ )! j V a (r )!</r. (6.3.4)

For the numerator of (6.3.2), we proceed as follows

" - 2 P\)$ - . = n- l a ± ( p  + £ l - { p  + *))$_,
t* I /«!

1*1 '(*1

= > (-l/2 )C ;22a Sa2(l,l,0). (6.3.5)

In addition, note that

nx-2ad  = n 2aY \ Y , - Y , _ =rt'2“£(f,  ~ * f
/.i v ' /-i

=>C-a\ aSa2 { 1,1,0)1 (6.3.6)
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Combining (6.3.4), (6.4.5) and (6.3.6), we have

/ « 2

This completes the proof of Theorem 6.3.

Remark, (i) The asymptotic result of the LM  remains the same if e, ’s are iid random variables from 

the domain of attraction of a SaS law. Of course in this case n ' “ must be changed to an defined in 

Section 6.2. (ii). If e, ’s are scale mixture of normal (not independent any more), that is,

e, ~ A '2Z ,, where A is some positive random variable, then the asymptotic distribution of the LM  

would be the same as that for et 's being iid normal since the ZiV/ statistics is scale invariant.

6.4 Asymptotic Distributions of Durbin-Watson Statistics

The Durbin-Watson (DW) statistics were originally designed to detect the presence of serial correla­

tion of the errors in the regression models. It is known that the DW  test has good power and certain 

optimal properties in this case. Dickey and Fuller (1981) suggested the use of the DW  statistics for 

the tests of unit root. Saran and Bhargava (1983), Bhargava (1986), Nabeya and Tanaka (1990) de­

veloped the DIF-type test statistics for the unit root tests. Kim (1997) provided the asymptotic per-
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centiles of the DW  tests for both regular and seasonal cases, and the power of the DW  using Imhof 

routine. It was shown numerically (Kim, 1997) that the DW-type test statistics have better behaviors 

against the Dickey-Fuller type test statistics. However, all the above mentioned results were ob­

tained based on the finite variance assumption. In this section, we try to develop the asymptotic dis­

tributions of the DW-type statistics for the unit root tests based on infinite variance time series mod­

els.

Consider the following model

K = X,/? + «,. (6.4.1)

If {Y, } and {X ,} are nonstationary time series and {w,} is stationary, then we say j and {X,} are 

cointegrated. But if {m,} is nonstationary, model (6.4.1) is misspecified.

Suppose (w,} in model (6.4.1) satisfies

u, = <pu,A + e, , (6.4.2)

where {e, } is a stationary process. Then {u,} is nonstationary if <j> = 1. Note that model (6.4.1) and

(6.4.2) are jointly represented by

The generalized DW  statistics for testing H0:<fi = 1 is given by

where u, are the residuals of the regression model (6.4.1).
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6.4.1 Regular Unit Root Test. Now let us consider the regular unit root test for time series model 

with zero mean. Let \Y, } satisfy the following model

Y,=u„ u ,= $ u ,A +£n  (6.4.3)

where e, are iid random variables from the domain of attraction of a Sa ( c r ,0 ,0 )  law with index 

0 < a < 2 . For the test of 1, against H x:\4\ < 1, the DW type test statistic (see, Tanaka,

1996) is proposed as

I L O L M L .
i

Without loss of generality we assume that Y0 = 0. Under H0:<p = \ and by Theorem 6.1, we can see 

that

- S - t ) 2 = < 2I".,*«2 ^ < ^ ^ ( 1 , 1 , 0 ) .  and

(wa»2) ' E - i = * “ Jd L*(r f dr • <6A 4>

Now consider the following nonzero mean AR{ I ) model

Y ,= n  + un  ut — <f> + e, , (6.4.5)

where the errors are the same as in model (6.4.3). Note that (6.4.5) can be jointly written as

Y,=(\ +

For the same hypothesis as in (6.4.3), the proposed DW  test statistic for model (6.4.4) is given by

s r . - g - . f r

n o ;  - n
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where Y = « _‘X " . J , ■

Under H0:</>= 1, according to Theorem 6 .1,

and

( 1  ~ Y- f  = ^ ^ “ 5 .,(1 ,1 ,0 ) , (6.4.6)

= H f  - [ K r ' i ; . , *

=. ct 3 c ;= “ |  (r)2 rfr -  [ „ ('■>*•] J

‘ a ' C° ' °  l l { L° ( r ) -  i ' ,L° ( r )d' }  dr

Collecting the above results (6.4.4), (6.4.6) and (6.4.7), we have the following theorem:

(6.4.7)

Theorem 6.4 /. Let {^} satisfy (6.4.3), then under Ha:<f>= 1, the limiting distribution o f nDW  ̂ is 

given by

c;\"so2( 1, 1,0)
nDW,

II. I f  {Y,) is generated by (6.4.5), then under H0:<f>= 1, the limiting distribution o f nDW\ is given 

by

c;\°s, ,  ( u , o )
nDW,

C? °  \ l \ La{r)~ \ lL a{r)dr\ dr

Remark. If e, ’s have a /2  -stable mixtures of normal distributions, i.e., they are radically decom­

posable, then the limiting distribution under null hypothesis would be the same as it is for the normal
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innovations case. The exact distribution and the exact power of DWX and DW2 can be obtained using 

the Imhof routine (Sargan and Bhargava, 1983, Bhargava, 1986). If ( f ,} is a linear process with 

infinite variance, the following result can be obtained using Lemma 6.2.5.

Corollary 6.4.1. In model (6.4.3), i f  } is linear process, i.e., s, = Y ^ . \ cj u'-j satisfying 

^  < 0 0 ’ where S  =  I a  a . Then, under H0:<j>= I,

6.4.2 Seasonal Unit Root Test. The asymptotic results can be extended to seasonal time series 

models. Let us consider the following zero mean seasonal model

where s is the period of seasons, e, ’s are iid random variables from the domain of attraction of a 

5a (cr,0,0) law with index 0 < a  < 2. For the test of / /0:<D = I, against //,:!<I>|<1 under model 

(6.4.8), the proposed DW  type test statistic is given by

Without loss of generality we may assume that n = ms and Y_,+1 = ••• = Y0 =Q. Let

/ =(/ -  l)s + j  (I = l,...,m ; j  = l , .. .,s ) , then by Theorem 6 .1 ,as « - > « ,  m - n o , we have

Y,= u,, u, =Q>ul_ ,+ e l , (6.4.8)
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[fu r]

/- i

and

<•; ' i < 6-4 l 0 >

where z/ay*(r)’s are the mutually independent standard Levy motions and W, ~ S a (1,1,0) iid, corre­

sponding to the partial sums of e, belonging to they'-th season. Recall that an = n 'alQ(n) where 

/0(n) is slowly varying at infinity, and n = ms for some positive seasonal period s, we have

a n la L(n) , „ iJm s) .
—  = —-----—  -  5  J  -» j 1 as/w->oo, (6.4.11)
am m al0(m) l0(m)

and

n a ;  n U 2 a l o { n )  u i a l o { m s )  i .2a
— n-  =  — r - ,---------r - r  =  s  ; , — > s  a s w - » o o ,  (6.4.12)
ma'm m'*‘ a l0(m) l0(m)

by the definition of slowly varying function. 

From (6.4.9) - (6.4.12), we obtain

f * l  y * l  '  / - I

- ^ c ; 2*)®. ,(i,i,o), (6.4.13)
7 - 1

since ’s are iid Sa , (1,1,0) and hence =</ 5 2  “•S'a :(M.O) •

Moreover, by Theorem 6.1,
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K r ' i n ' - i f K C ' z i ! ? - , , . . , '
/ - I  y - l  '  / - I  ■*

^ < r 2C ; ' - ° i l l & ](r)2dr. (6.4.14)

In view of (6.4.12), (6.4.13) and (6.4.14), we have

« ° i  ( « ; ) ■

c i \ “ - s .  ,(1.1.0)

= c “! " i
y « i

(6.4.15)

We also consider the asymptotic distribution of the DW statistic for a univariate time series with 

nonzero seasonal mean model:

Y < = ' L P j S j < +u>' u‘ =(pM'-i +£>' (6.4.16)
7 - 1

where e, 's  are independent both inter-seasons and intra-seasons and in the domain of attraction of a 

Sa (a ,0,0) law with 0 < a  < 2 , Sjt = 1 ify h /(mod s) or 0 otherwise, Sxl s  SQl, and s is the seasonal 

period. Note that model (6.4.16) can be jointly written as

^ ( l - < » ) l A V ^ - +£r
7 - 1

To test Hq:<D = 1, against / / , : |<t>| < 1, the following DW  statistic is proposed (see, Kim, 1997),

DW, = — *’- )  ...,

- T jJ a )
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where Y} = m~‘ , fy.,),*, is the OLS estimate o f they'-th seasonal mean .

Note that - ^ , ) 2 = i ; , ,1 7 .2 ^ - . ) ^  ^ n d  by (6.4.10)

Hence

■ 2 a 1 J- r\  *  M ffl x

( a 2c a-2,a ) s '2ai  WJ = , (<r2c ; 2:a )sa 2 (1,1,0)
J* I

Furthermore, observe that -  ! ] „ ,  % ) ’ = I ] . ,  "  K/ ) ’ • and

a *2i r . . ( w , - fv) ' ^ ° ' c *l a \ l { L' ° { r) - \ l w { rY r ) dr  f o r > = i ........

we have

=» " ’c ."1 * X  fo {4 '1 H  -  /J 4 ,'1 (r Mr }: dr

The results (6.4.17) and (6.4.18), together with (6.4.12) yield

nDWi =„

s .i (* :-x;.,%)! x;.,K)"x; . , - i
s u l ‘ Sa l (U,0)—2 a 

a 2 
/ - '-2  <r s
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J ,

(6.4.18)

r
(6.4.19)
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Collecting result (6.4.15) and (6.4.19), the following theorem is then in order:

Theorem 6.5 I. Let be generated from model (6.4.8) where e, 's are independent both inter­

seasons and intra-seasons and in the domain o f attraction o f a Sa (ex,0,0) law with 0< a  <2. The 

limiting distribution o f nDW} under H0 : <t> = 1 is given by

c;V ,(i.i.o)
»w i = p i r - r - --------------■

" X I l & r f d r
j-1

II. I f  [Y, } is generated by the nonzero mean seasonal model (6.4.16) with same assumption for  

e, as in model 96.4.4), the limiting distribution o f nDWA under H0: <P = 1 is given by

c ; ' ^y-l I '

where s are the mutually independent standard Levy motions corresponding to the partial

sums o f  e, belonging to the j-th season.

6 .4 J  Simultaneous Tests for Both Regular and Seasonal Unit Roots. In what follows, we 

consider the simultaneous tests of the both regular and seasonal unit roots for a zero mean time series 

model:

Y, = u ,, (1 -  00)( 1 -  = e , , (6.4.20)

124

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

where e, ’s are iid random variables from the domain of attraction o f a symmetric stable law with 

index a , 0 < a <  2 for both inter-seasons and intra-seasons, and B is the backshift operator. For the 

simultaneous test of the null hypothesis

/ / „ : ( *  4>) = (l, 1)

verses the alternative hypothesis

Ha: -1 <*,<!>£ 1 and(<*, 4>)*(l, l), 

the DW test statistic is proposed (Kim, 1997) as:

DW,; =
I » |( C  -  ^  -  **)>;)' E ;.,(r, - 1!., -  r„, * r,.,., f

i;.,? x;.,?
Without loss of generality, we may assume that n = ms and K_, = = Y0 = 0. Under H0, if we

write (I -  B)Y, = N , , then Y,= Y,.X + N, and N, = N ,., + s , . Thus,

r . =z;.,x?r"'V.>.., «“• j ■
Therefore,

t (mr) t
K ) ’1 *[„,] = 1 1  + °„0) => ocj1 a I  J0r4 ;l (n y n  = oc« aM r) .

y - l  / - I  y - l

and hence

)‘2X ^ 2 = n -'(m a„ y1Y t Yli l +op(\)
/*i i*i

= i \ i . { Y[nr\l{ma'n ))'dr + °p{})
/ ■ I  *
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= Jo (Yw/(ma<*jfdr + Op(l)
^ (< r 2C-al a )j'oBY(r)2dr. (6.4.21)

In addition,

< ! t ( o  -  s t '  -  b ' Y . )  =
/»! 7*1 *̂1

=  K ' ‘ K ' T ; . , * ' ,  j C.i.0) (« -« 2 )

Combining (6.4.21) and (6.4.22), we have

\n m 'a 'J " " ( m . y ' - y , , * ; -  

C l * i !-!“s a2(u,o)
^  r !a  ri .

c a 2 Jo5 y( r ) '7 r

The following theorem is then in order:

Theorem 6.6 Under H0: (f>, <t>) = (l, l) fo r  model (6.4.20), the normalized DW statistic for the 

simultaneous unit root tests n i DW} has the following asymptotic distribution:

„ 3

C l!  I ' M r f d r

where Br (r)=  )drx and L ^ \r )  s  are the mutually independent standard SaS Levy

motions on [0,1].
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Remark. If e, ’s are independent inter-seasons and but not independent intra-seasons, the limiting 

distributions of nDWz and nDWi in Theorem 6.5, and n}DWS in Theorem 6.6 would be different, 

since W} =d s 2 a S a 2 (1,1,0) requires that ’s be iid .

6.5 Asymptotics o f the Ranked Dickey-Fuller Unit Root Test Statistics

It was argued in Breitung and Gourieroux (1997) that the rank counterpart of the conventional 

Dickey-Fuller unit root tests is advantageous over the parametric tests. The ranked test reduces the 

influence of outlying observations, and is unaffected by the choice of the initial transformation ap­

plied to time series before the unit root test. In Breitung and Gourieroux (1997), the ranked Dickey- 

Fuller test statistics were proposed for the test of hypothesis that the series is a monotonic transfor­

mation of a ramdom walk. Under the assumption of the existence of the second moment, it was 

shown that the sequence of ranks built from the levels of time series does not converge to a func­

tional of Brownian motion, the asymptotic properties of the rank test are hence different from its 

parametric counterpart. In this section, we want to investigate the asymptotic properties of the 

ranked Dickey-Fuller unit root test for the infinite-variance time series. Let [Y, }, t = 1, ..., n be a 

series of observations, and let A be a monotonic function such that Z, =h{Y,) satisfies the following 

AR( 1) model

Z, =pZ,_, + £ ,, r = l, ..., n , (6.5.1)

where { s , } is a sequence of i i d  random variables from the domain of attraction of S a (o’,0,0) law 

with index a, 0 < a < 2 . For the null hypothesis that the transformed series {Z,} is generated by a
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random walk with p  = 1, that is, H0: |3A monotonic: h(Y,) = + e, J , the following testing

procedure is proposed. We firstly constructed a series of ranks {r, j

r, = Rank of A(^) among A(lo), •••, h(Yn) - ( n  + l)/2 

s  Rank of Y, among 1^, Y„ - ( n  + l)/2 . (6.5.2)

The second equality holds because h is assumed to be monotonic. Under H0: p -  1, model (6.5.1) 

can be written as

Z, =Z 0 + t v
1‘ I

Let Z0 = 0 for simplicity. As shown in Theorem 6.1, we have

which follows that

" " V i  = n' " L x[z ' < z [«.\) < < 1zh )

=  I  f i  l { a " Z [ n \  < a 'n'Z [>n\)dU =  f o  ^ ' Z [ ; « ]  <  Z [ » \ ) dU

=> /?(s) s  | o‘ l(La(w) < La (j))cfo as n-*<x>. (6.5.3)

Therefore, the limit of normalized partial sums of ranks defines a stochastic process indexed by 

5 e[0, l] such that /?(s) is the occupation time of the set ( -  oo, La (j)] by the Levy motion.

Let /?(0) = Jo' l( La (m) < (fjdu, follow the some line of Property 2 of Breitung and Gourieroux 

(1997), we can show that R(s) = sR, (0) + (l -  s)R2 (0), where R{ (0) and /?,(0) are independent.
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Furthermore, by noticing that =r,_,, for ^  <, s<  £, t = 1, n , we have the following 

lemma:

Lemma 6.7 Let Z, be generated by (6.5.1) and r( be the ranks o f Z, defined in (6.5.2), as n-*<x>, 

we have

<a> n ' 2 (r< "  r->) => Jo ’

(b> "" 'I" ..'''-' => J0I/?(J)2* ’

Proof. Part (a) is proved by noticing that

n ' 2 -  r< -i) = n ' : i " . ,  \ i  v r t - i = L V  ^  Id

For part (b), it is clear that

j i f - . i * = Jo(""lv i ) ' ‘&=> J01/?(5)2

and finally, for part (c)

" '2Z " -i(r. - r'->)2 = » ‘2I" -i J . i ( <*l*])2 = f o f ^ ’ V i ) *  =* J o W 5))2 ’

where is the quadratic variation of /?(s) defined as

!„'(<«(*))’ ■ [*•*), - * 0 ) '

Thus we complete the proof of Lemma 6.7.
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Combining (a) and (b), we have

(6 -5 '4 >

hence

L V ^ - ' m ) / L V m = ‘ ,( 0 -  <6 5 -5>

Define c ,  =  r,tJr,, j  = 0, 1, and <r.2 = (n -  l)*‘ [r, -  ( c ,  / c 0 )/•„, ]2 , then by (6.5.5)

ct/c0 -  I = Z " -ir«-i(r» = 0 />(1) ’ (6 5 '6>

and

n-'o-; = « _'( « - l ) " , S ;. |[ r ,  - ( c , / c 0h - i ] ‘ ~ r<-i “ (ci/c0

= " ' 2 I " - i ( r i - r - i ) 2 - 2 n ' 2 ( c 1/ c 0 - l ) X " . 1V i ( ' - ,  - ' • , - i ) +  " " 2 ( c i / co 

=> J > /? ( ,) )2 . (6.5.7)

The rank counterpart of the conventional DF t statistic, suggested by Breitung and Gourieroux 

(1997), is defined as

tp = < t ; ‘ ( c 1 - c 0 ) / c -  .

Collecting result (6.5.6) and (6.5.7), we can establish that

'» -< '■ '(c< - c° ) /ci 2 = =■ {Io(M (s) i : ( A 1) ’* }  ■

thus, the following theorem is in order:
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Theorem 6.6 Under model (6.5.1), the rank t statistic for testing unit root has the following asymp­

totic distribution

'p => L ' w V f L V ^ ) ) 2Jo*W 2* }  as " - * 00

From this theorem, we see that the asymptotic distribution of r-ratio for the ranks is a functional 

of a stochastic process R(s), which is the occupation time of the set ( -  ao, La (j)j by a standard SceS 

Levy motion La ( j ) .

6.6 Asymptotic Behaviors of Spurious Regression for Infinite Variance Case

The ‘nonsense’ o f regression between two random walks was empirically evident in Granger and 

Newbold (1974). Phillips (1986) obtained some analytical results for the spurious regression for the 

finite variance case. The purpose of section is to study the spurious regression when the error vari­

ance is infinite. We will show that the ‘nonsense’ results are also valid if regression is made between

two independent random walks whose errors are from the domain of attraction of symmetric stable 

laws.

Consider the following regression

K  = P o  + P \ X ,  + « , ,  /  = I, . . . .  n .  (6.6.1)

If } and [ X , } are generated by two independent random walks

Y, = £_, +v ,, X, (6.6.2)
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then we encounter the so-called spurious regression. Phillips (1986) studied the asymptotic behav­

iors of sample moments for spurious regression in the case that {v,} and {w,} are sequences satis­

fying some weak dependencies and having finite variances. In this section, we assume [v,} and 

{w,} to be two independent sequences of iid random variables in the domains of attraction of a 

Sa (<7„ ,0,0) law and a Sa (<r„ ,0,0) law with 0 < a  < 2 respectively. Assuming Y0 = X Q = 0 for 

simplicity, the following lemma is then in order

Lemma 6.8 Let ] and {.Y,) be generated by (6.6.2). I f  the innovation sequences jv ,) and jw,} 

be two independent sequences o f iid random variables in the domains o f attraction o f a Sa (<7V ,0,0) 

law and a Sa (crw ,0,0) law with 0 < a  < 2 respectively, then, as n-+  oo,

(a) { n a „ y 'f i X l =>C;'a(Twj y a (r)dr,
i-1

)*' Z ^  ^ C ' ' acrv }o'Va (r)dr;
!•{

(b) [rta; ) 1£  X; => ( c ;11 ",trw)‘ Wa (r)2d r ,
i=i

j ' M ' f * - -1.1

(d) (no ;) ‘ z ^ x ,  = > (c ; , a )2 <r,crw j ' Va(r)fVa (r)dr ;
i * i
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(■>.’ r '  1  r.iy.~ K-,) =  0 /2 K  (c ;! *F„ (1)! + ■c:\° L ,};
/ - I  v '

(0  k 2 )'■ t  s . ,  (* , -  X , . x) + )_l £  (j; - 1;.,)
(»i 1*1

where Wa (r) and Fa (r) are independent standard SaS Levy processes on Z)[0,l], Lv 

Lw ~ Sa , (1,1,0), and Lv and Lw are independent.

Proof. Result (a) and (b) can be found in Theorem 6.1. Observing that

H Y ' i ( x , - x f  =K)“t
f » l  ( • !  '  / « l

Part (c) follows immediately. To prove part (d), we first note that

-JX'a-,., /.i x,(r)dr.(r)
f-0 l»l • /-I *

= £ X„(r)dYn(r) =>c ; 2acrva w j'QfVa (r)dVa t o

and

^ C -ala <J„ow\ {Va(r)dWa(r).
tmQ

By Lemma 6.6,

n

«»2Z v/ vv' a s••
1 -0

Combining (6.6.3), (6.6.4) and (6.6.5), we obtain that
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[nai Y  £ y,x , = (nai ) 1 x  K-i x >-\+ {nai r  \ i v'x '- i+i w'Y’-\ + x  vr w>
(« i  / » i  h -i  / * i  ( -1

=  S  Y« (r )X n (r ^ r  +  O p 0 ) =  Jo  Yn (r)X n {?)& + O p ( l )
tm \ •

= >  (c a l “J * , * *  fo v a { f p a  {r)dr.

This proves part (d). To resolve (e), we proceed as follows

f e  Y t x , (x ' -  )= & Y  i  + k/■i /-i

(>i /-i
=>0/2)crijc;2afya(l)2 - C~\aLw}+ ff2Ca-2“Lw 
= 0/2)cr;{c;2“rFa(i)2 + c~\aLw}

For part (f), using that £ v ,£ v v , = £ v ,w ,+ £  £ v y w, + £  £ w y
f-l (■! (»1 / /.|Vy.| /

v, and the fact that

(a2) ' ^  v, w, -> 0, a~s., we have
/ • i

I r i r t r t f . - x , - , ) + k V i x , ( r , - K - , )
/ • I  f » l

=(°n r  z  ^  k<-i+ r t v ,  x - \ + 2 f e  r  x  y. w«
; - l  / - I  ( . 1

= W ' 2 > . S v , +(«;)■ 'j > , » ,
/ - I  i - Q

• C f r . v . r . Q F .  0 )

/•I

We complete the proof of Lemma 6.8.

Theorem 6.8 Suppose (6.6.1) is estimated by least square regression and the conditions o f Lemma 

6.8 are satisfied. Then, as n -*  oo,
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(a)

(d)

(e)

A  =>— - — —------------- ^  - = K / < r .K ,  where

C =

{ Jd (r)2 “ (/o <rVr)2} 

{ t y . f r X M * -  /> .» * ■  f X o > f  

{jy.w1* -(j»  >*■)■}

(b) o.-'A  => C ;1 “ cr. |  J  V„ (»•)<*- -  ̂  ('•>*• j ;

(c) n"12*# => / / / v12 , where

/X w1* -(/Xt-XTM •'/Xw1*
i :

r ’ l / x w ^ - Q X - w * ) 1}

/.‘n . w 1 <*• -  ( / > -  (<-)«*■)1

(f) DW -*  0 a.s., and

nDW  =  |(£ , / C ? '* <r;) + f :' ( L . /C ? '“cr=)}[ JV „ (r)2 <*• -  (  jV „  (>**•)'
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. * I I M X‘ - X) H )"' I" - . Y'X'~  I"-> Y' I a;1 £"*> X‘ )Proof. Note that /?, = 1 - *---------/  =  -----    , and
(»a=)- Z „ , ( x , - x )

a ' , 'h  = » ; ' ( ? - P \X )  = 1  • applying Theorem 6.1, part (a) and (b)

follow immediately.

To prove part (c), we define s 1 = « " 'X " .i(^  ~ 0o ~ 0 \ ^ t )  .then

fo v*(')’dr~{for.(r¥r)' -?If> . ' dr-{J o (r)dr)'

Now notice that n~l
n ' sk

Part (c) is proved by using Lemma 6.7 and results in Theorem 6.5 (a) and (b) after some simple 

arithmetic

where n  and v  are defined in part (c) of Theorem 6.8.

Part (d) can be established similar fashion by observing that

- I  2  ’

00- L 2 .  _
n  A  -  „12

1 2

A ” L X ' 2) (a ;^ ){K 2) 1 L m  }
12

The coefficient of determination converges as follows
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The Durbin-Watson statistic is given by

V " , (u, -  u, , )* .
D W = ^ , . i \  • L i i _  =  n - ‘ —

r . i “'

The denominator converges as

anl X r .2(v' “  A wi )2 => + C 2 “ovV2 as n -> oo ,

whereas the numerator converges as

Thus, DW-> 0. However the standardized DW  statistic converges as
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nDW ^> ( c * ° a ; 1 Ly + £ 2a ' 2Lw Jfl' Va (r)2d r V a(r)drj

-r!{f

This completes the proof of Theorem 6.8.

Remark. For the infmite-variance case, we also have the phenomenon of a spurious regression in the 

sense of Granger and Newbold (1974). In other words, the least squares regression in (6.6.1) leads to

the divergence o f the OLS estimate of f a , and to the convergence of fa . The coefficient of determi­

nant R2 converges to a random variable, conventional r-ratios diverge with rate n '2 and the DW- 

statistic is Op[n~x).

6.7 Concluding Remarks

This chapter considers the asymptotic properties o f sample moments and some unit root test statistics 

for the first-order autoregressive time series models with infinite variances. The results obtained in 

this chapter can be viewed as a parallel but not trivial extension of the finite-variance case. Some 

asymptotic distributions of sample moments are found to have explicit densities. The limiting distri­

butions for the LM  statistic and the DW  statistics are expressed as functionals of standard SaS Levy 

motions. The ranked Dickey-Fuller test converges to a functional of some stochastic process other 

than Levy motion. The spurious phenomenon for the infmite-variance case is observed to have the 

similar fashion as the Gaussian case. Some additional remarks are made as follows: (i). We assume 

that the innovations are symmetric throughout this chapter. But this symmetry condition may be re-
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laxed. When a < 1 no further requirement beyond the domain of attraction of an a-stable law seems 

to be needed. When a  > I we require £ ( f , ) = 0 so that the sums involving e, do not need to be 

centered. Only for the case of a  = 1, we assume the symmetry. In fact, Chan and Tran (1989) de­

rived the asymptotic results based on the above assumptions, (ii). Similar to the finite variance case, 

all the results can be extended easily to models with drifts and time trends by just replacing the inte­

grals of Levy process by demeaned or detrended Levy processes, (iii). If s  = ..., (/„)

where G, ’s are iid normal, then the scale invariant statistics, such as the LM  statistics, the DW sta­

tistics, have the same asymptotic distributions as it is for the normal case. Note that, in this case, 

s, 's are identically distributed but not stochastically independent. If A is a positive a /2  stable ran­

dom variable, then e, ’s are jointly S a S , and hence have infinite variance, but they are not stochasti­

cally independent.
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